

Computer Programming with the Nim
Programming Language

A Gentle Introduction (C) Dr. Stefan Salewski 2020, 2021, 2022, 2023, 2024

Table of Contents
About this book . 2

Disclaimer & legal notice . 6

I: Introduction . 9

What is a computer? . 10

Analogue and digital . 12

What is an operating system? . 14

What is a user interface? . 16

What is computer programming? . 17

What is a computer program? . 18

What is an algorithm?. 19

What is a programming language? . 20

Compilers and interpreters . 21

Types of programming languages . 23

Why Nim? . 28

Some facts about Nim. 28

Nim supports many programming styles . 30

Nim is efficient . 31

Nim is expressive and elegant . 32

Nim is open and free. 32

Nim has a community . 32

Nim is evolving . 33

Nim is not a virus . 33

Why is Nim not a popular mainstream language yet? . 33

Is Nim a good choice as the first language for a beginner?. 35

Is Nim really a good teaching language? . 36

So, is Nim really the best starting point for me? . 36

After learning Nim, will I still have to learn other programming languages? 36

Why should I not use Nim? . 36

How long does it take to learn Nim?. 37

Our first Nim program . 38

Binary numbers . 42

Hexadecimal numbers . 46

Installation of the compiler . 47

Creation of source-code files . 48

Launching the compiler and running the program . 50

Stropping for keywords and operators. 53

II: The Basics . 54

Declarations. 55

Statements . 58

Input and output . 63

Data types . 65

Integer types . 66

Floating-point types . 69

Distinct types . 74

Subrange types. 75

Enumeration types . 76

Boolean types . 78

Characters . 79

Ordinal types . 81

Sets . 81

Strings . 86

Comments . 92

Other data types. 92

Nim source code. 94

Blocks, scopes, visibility, locality, and shadowing . 95

Global code . 97

Whitespace, punctuation, and operators. 97

Operators. 98

Order of execution . 98

Control structures . 100

If statement and if expression . 100

The when statement . 102

The case statement . 103

The while loop . 104

The block statement . 106

For loops and iterators . 106

Objects . 109

Arrays and sequences. 112

Some details . 116

Multidimensional arrays and sequences. 119

Slices . 122

Value objects and references . 125

References and pointers. 128

Introduction to pointers . 128

Pointer arithmetic . 130

Allocating objects . 131

References to objects . 133

Procedures and functions . 139

Introduction . 139

Special argument types: openArray and varargs . 151

Procedures bound to a data type. 152

Scoping, visibility, and locality. 153

Generics . 156

Example for the use of generics. 158

Method call syntax . 163

Procedure variables . 164

Nested procedures and closures . 165

Anonymous procedures. 167

Compile-time proc execution . 168

Inlining procedures . 168

Recursion. 169

Converters. 169

Object-oriented programming and inheritance . 171

Inheritance for value-objects . 172

Content copy of ref objects . 174

Other builtin data types . 176

Tuple types . 176

Object variants. 177

Iterators . 179

Templates. 184

Typed vs untyped parameters . 189

Passing a code block to a template . 190

Passing operators to templates . 190

Advanced template use . 191

Casts and type conversions . 192

Bitwise operations . 193

Exceptions . 195

Defects and catchable errors . 196

Raise statement . 196

Custom exceptions . 197

Try statement . 197

Try expressions . 198

Except clauses . 198

Imported exceptions. 198

Defer statement . 199

Destructors . 200

Destructors and inheritance. 202

Finalizers . 205

Modules . 208

Cyclic imports. 211

Include . 212

III: Nim’s Standard Library . 213

Command-line arguments . 214

Reading data from the terminal. 216

Writing text to the terminal window . 218

Option types . 219

Serialization — storing data permanently on external storage . 222

Streams and files . 230

Files. 230

Streams . 234

String processing . 238

Basic string operations. 238

Module stringutils . 242

Module parseutils . 246

Module strscans. 248

Module strformat . 253

Arrays and sequences. 256

Module sequtils . 258

Random numbers . 264

Timers. 267

Hash tables . 271

User-defined hash values . 275

Equality and identity . 277

Performance. 278

Tuples or other containers as keys . 278

CountTable . 280

Hash sets . 282

Operating system services . 283

Command-line parsing . 285

Regular expressions . 290

Greedy matching . 292

Escape sequences . 293

Final remarks . 296

IV: Some Programming Tasks . 297

Permutations . 298

Combinations . 302

Using mask permutations . 303

Using recursion . 304

First iterative solution . 305

Simplified solution . 306

Counting upwards. 307

Stack-based solution . 307

An iterative solution without a stack . 308

Sorting . 310

Selection sort . 310

Insertion sort . 311

Quick sort . 313

Merge sort . 323

Iterative merge sort . 329

Reading CSV files and other data . 336

Some small exercises . 337

Removing adjacent duplicates . 337

Array difference . 338

Binary search . 340

Integer to string conversion . 342

Minimum spanning tree . 352

The Prim algorithm. 353

Kruskal algorithm . 356

Disjoint-set data structure. 359

Kruskal with disjoint-set . 360

Kruskal with disjoint-set and Delaunay triangulation . 363

Prim with Delaunay triangulation . 366

Prim with Delaunay triangulation and priority queue . 368

GUI toolkits . 372

No game programming? . 374

V: External Packages . 376

Parsing expression grammars . 378

Capturing data . 380

Cligen command line interface generator . 384

VI: Advanced Nim. 387

Macros and meta-programming . 388

Introduction . 388

Types of macro parameters . 392

Quote and the quote do: construct . 396

The genast() macro as a replacement for quote do: . 398

Building the AST manually . 398

The assert macro . 403

Pragma macros . 405

Pragma macros for iterators. 406

Macros for generating data types . 408

Macros to generate new operator symbols . 411

Process execution . 413

Module threadpool . 415

Using the threads module to create new threads . 418

Using channels for data exchange between threads . 419

Race conditions . 421

Guards and locks . 422

Exceptions in threads. 423

Malebolgia. 423

Parsing data files (in parallel) . 427

Code execution with async/await. 445

Is async/await faster than multi-threading?. 446

Nim’s asynchronous dispatcher . 446

Asynchronous procedures . 447

Simple example . 448

File download. 451

A chat server application . 453

The client application. 457

Concepts . 461

Purpose of concepts . 461

Concept diagnostics . 465

Generic concepts . 465

Concept-derived values and concept refinement . 466

Concept redesign 2019 . 466

VII: Appendix . 471

Disclaimer and legal notice . 472

Acknowledgments . 473

Changes for Nim 2.0 . 474

ARC/ORC memory management . 474

Default values for object fields . 475

Overloadable enums. 475

CString limitations . 476

StrictDefs . 476

Out parameters . 477

StrictFuncs . 478

Unicode operators . 478

Unnamed break in a block . 479

Changes for Nim > 2.0 . 480

Nimble package manager . 481

Purpose of package managers . 481

Creating and publishing Nimble packages . 484

Public packages . 486

Performance of multiplication vs. division . 489

ASCII table . 494

Div and mod operation. 495

Text styles . 496

ChangeLog . 497

Nov 2021 . 497

Feb 2022. 497

Mar 2022 . 497

Dec 2022. 497

Mar 2023 . 497

Apr 2023. 497

Sep 2023. 498

Index . 499

If you are not able to explain it with words, you may have to add pictures.
And if you still can’t manage it with pictures, you could always make a
video.

1

About this book
In the year 1970, Prof. Niklaus Wirth invented the Pascal programming language as a way to teach
his students the fundamentals of computer programming. Although the initial core Pascal language
was designed for teaching purposes only, it was soon expanded by commercial vendors and gained
some popularity. Later, Wirth presented the language Modula-2 with improved syntax and the mod
ule concept for larger projects, and the Oberon language family with additional support for Object-
Oriented Programming.

The Nim programming language can be seen in this tradition, as it is basically an easy language
suited for beginners with no prior programming experience, but at the same time is not restricted
in any way. Nim offers all the concepts of modern and powerful programming languages, combined
with high performance and a certain level of universality. Nim can be used to create programs for
tiny microcontrollers, large desktop apps, and web applications. Most books about programming
languages focus on the language itself, often assuming that the reader is already familiar with the
foundations of computer hardware and has some programming experience. This is generally a
valid approach, as most people are taught this fundamental knowledge, sometimes referred to as
Computer Science (CS), in school today. However, there are people who, for various reasons, may
have missed this introduction in school and later decide that they need some programming skills,
perhaps for a technical job. Moreover, some children may not be satisfied with the introduction to
computer science taught at school. Therefore, we decided to start this book with a short introduc
tion to fundamental concepts. Most people may skip that part, but you should be really sure that
you know these foundations. This book is divided into seven parts — part VII is the Appendix. It is
possible to read the parts independently of each other in any order, but for Nim beginners, it is rec
ommended to read them mostly in ascending order, perhaps while previewing some interesting
sections in the second half of the book early on. In Part II, we explain the basics of computer pro
gramming step by step in a way that should enable even those with no prior experience to learn
independently. In this part, we might repeat some of the material that we already mentioned in
Part I. We do that intentionally, as some people might skip Part I, and because it is generally benefi
cial to reinforce the reader’s learning process through repetition. Part III will give you an overview
of Nim’s standard library, which contains many useful functions and data types that we can use in
our programs to solve common tasks like input and output operations, using the file system, or sort
ing data. In Part IV, we will apply what we have learned by solving some common programming
tasks, like sorting, searching, or converting numbers from the internal computer format to dis
playable text. Part V will introduce some useful external packages that can be easily installed using
one of Nim’s package managers. Nim already has a few thousand external packages — some of
them may support or replace the standard library, and others offer special or advanced functionali
ties. Part VI of the book will finally introduce advanced concepts like asynchronous operations,
threading and parallel processing, macros and meta-programming, and, last but not least, Nim’s con
cept implementation. Some sections, that do not integrate well into the other six parts, or that are
boring or useful only for a minority of Nim users, have been moved to the Appendix and may not
be part of a printed copy of the book. This currently includes a short introduction to Nim’s standard
package manager: Nimble.

This book is essentially a traditional textbook — simple yet detailed. It is designed such that individ
uals aged 14 and above can read and understand it independently, with little or no help from
adults. Unfortunately, the English language may still be a challenge for many kids not born in a

2

country with a strong English language tradition. Fortunately, automatic translations are already
supported for some languages, and we might be able to offer translated editions of the book later,
possibly in Chinese and German.

In the last few decades in the area of computer programming, traditional textbooks have been
partly replaced by videos, "Crash course" books, and "Learning by doing" books. Indeed, a good
video may help you start with a new language, and it can enable people who have difficulties read
ing printed texts or concentrating on a topic for a few minutes to learn a programming language.
Unfortunately, the quality of most videos is very bad; some are made by kids just having learned
the first steps of computer programming themselves. Furthermore, watching videos does not neces
sarily improve the reading and concentration issues that people might have. "Crash course" and
"Learning by doing" books may give you a good start, but for that, we already have a lot of textual
tutorials. The concern with these types of books is that, while they may help you solve common
tasks, they don’t necessarily foster a deeper understanding. Generally, the idea of a "Crash course"
or "Learning by doing" is not bad. However, in computer science, starting with a larger example
application can be overwhelming, as you have to learn a lot of things simultaneously. It may work
for you, but there is the danger that you forget all the details very quickly again. Moreover, these
types of books are not very helpful when you need to look something up. The other concern with
"Learning by doing" in computer science is that learning materials may have only examples in
which you may not be really interested: Of course, we can create a simple chat application, a simple
Twitter clone, and do some basic web scraping using async/await. Or create a basic game or a sim
ple GUI with one of the dozen available toolkits. But what if you are not interested in chatting and
twittering, and that single selected toolkit? We believe that in such cases, reading the detailed
examples can be very frustrating. Therefore, we recommend that after reading the first tutorial,
and perhaps a few pages of this book, you start coding with topics you are interested in. Perhaps
you could do it together with some friends? Whenever you need concrete help, you can find it on
the Internet, using search engines, Wikipedia, or a discussion platform of your choice. And if you
really have no idea what project to start with, then computer programming might not be the right
profession for you.

Although Nim has a JavaScript backend and thus well supports web-related development, this book
focuses on native code generation using the C and C++ backends. We will discuss some peculiarities
of the JavaScript backend in the second half of the book, and we may provide some examples of the
use of the JavaScript backend in the Appendix. If you are strongly interested in web development
and the JavaScript backend, then you may also consult the book Nim in Action by Dominik Picheta,
which gives some detailed examples for the development of web-based software using the Nim pro
gramming language, including a simple chat application and the foundation of a microblogging and
social networking service. You may also consult the tutorials and manuals of Nim web packages like
Karax, Jester, or Basolato.

This book will not attempt to explain things that are already well-explained elsewhere, or that
should have been well-explained elsewhere — at least not in this first edition, where we have many
other essential topics to cover. So, for now, we will leave out the following: the installation of the
compiler, the process of installing and using text editors or IDEs with special Nim support, the use
of Nim package managers such as Nimble and Nimph, the use of the foreign function interface (FFI)
to create bindings to C libraries, and internal compiler details like the various memory manage
ment options and all the pragmas.[1] Also, we do not intend to fill the book with redundant informa
tion, such as tables listing all the Nim keywords or Nim’s primitive data types, as you can easily find

3

all of that in the Nim language manual.

While the creation of graphical user interfaces (GUIs) is an important topic, we cannot provide
many details for various reasons. Nim does not have a singularly accepted GUI library, but there
are more than 20 attempts — from pure Nim ones like NimX or Fidget, to wrapped libraries like
GTK or QML, to GUIs that try to provide a native look for various operating systems like XWidgets
or NiGui, and even web-based GUIs. And for each of these, at least for the more serious ones, we
could write a separate GUI book. Therefore, we will only provide a few minimal examples for some
of them in Parts IV or V of the book.

Furthermore, we will not delve into game programming, as it is a broad area with numerous exist
ing tutorials.

Maybe in later editions of the book, we will add some more topics, e.g. game programming, as so
many people like it. However, we will always have to ensure that a potential printed version of the
book does not exceed 500 pages, which may require us to exclude some content in the printed ver
sion.

Generally, when learning a new programming language, people start with some short tutorials
before delving deeper into the language by following a book. This approach is indeed a good start.
So we recommend that you read the short official tutorials, parts 1 and 2, and perhaps also some
other tutorials freely available online. Tutorials typically only scratch the surface of the topics, so
you may not fully understand them all, but this approach gives you a feel for the language. There
also exist some video tutorials, in case you have problems reading. However, if that’s the case, this
book might not be of much use to you. If you already have a background in computer science and
experience with other languages such as C++, Haskell, or Rust, the tutorials and the Nim language
manual might be fully sufficient for you; thus, you may not need this book at all. Or you may prefer
the recently published book of Mr. Rumpf, called "Mastering Nim: A complete guide to the program
ming language" available at Amazon.com.

This book is based on the Nim reference implementation by Mr. A. Rumpf. Most explanations and
examples should also be valid for other implementations, like the one at https://github.com/nim-
works/nimskull.

Although the initial pages of this book were written in the spring of 2020, the book should be mostly
up-to-date with Nim versions 1.6 and 2.0.

Nim version 1.6.14 was released on 27 June 2023 and includes many bug fixes for the 1.0 branch.
Nim 2.0, initially announced for early 2023, was finally released on 01 August 2023.

The v2.0 release brings many improvements but does not include any serious breaking changes
that would invalidate old code. Only a few minor modifications might be necessary for old code to
compile and run again. In this book, we may use and discuss a few Nim 2.0 features, but most code
should be compatible with the 1.x series of the compiler or with nimskull (cyo) with no or only
minor changes.

The most significant change in Nim 2.0 is that ORC memory management has become the default
indicating that it is considered ready for use in production. ORC gives us GC-like, fully deterministic
memory management with minimal overhead compared to manual memory handling. It reduces
the maximal memory consumption of apps, avoids GC-generated delays, and may increase the per

4

https://github.com/nim-works/nimskull
https://github.com/nim-works/nimskull

formance of our programs. Additionally, ARC and ORC memory management should bring serious
advantages for the creation and performance of threaded and parallel code. We have summarized
the most important new features of Nim 2.0 in the appendix titled Changes for Nim 2.0.

Note that incremental compilation (IC) or CPS task scheduling (Continuation-passing style) is still in
development and not yet fully supported by Nim v2.0. And for parallel and threaded code execu
tion, it may be useful to consider high-quality external libraries rather than those in Nim’s standard
library.[2]. This may also apply to modules for asynchronous code execution and a few other
libraries.[3]

[1] Actually, the Appendix contains a short introduction to Nimble, Nim’s most used package manager.

[2] https://forum.nim-lang.org/t/9768#64336

[3] https://github.com/status-im/nim-chronos

5

https://forum.nim-lang.org/t/9768#64336
https://github.com/status-im/nim-chronos

Disclaimer & legal notice
For all the details please refer to the corresponding section in the Appendix: Disclaimer and legal
notice

Electronic versions of the book in HTML and PDF formats are available at https://nimpro
grammingbook.com.

For a short overview of the Nim programming language, you may also consult the website at
https://nimprogramming.com/.

For the latest news about the Nim language, installation instructions, and much more useful
information, visit the official homepage at https://nim-lang.org/

An alternative Nim implementation, which may later develop into another language, is avail
able at https://github.com/nim-works/nimskull.

The source code for the book can be found at https://github.com/StefanSalewski/NimProgram
mingBook. You can use the GitHub issue tracker to point out mistakes or unclear explana
tions, which we will strive to address.

About the author

Dr. S. Salewski studied Physics, Mathematics, and Computer Science at the University of Ham
burg (Germany), where he earned his Ph.D. in 2005 in the field of laser physics. He has
worked in the field of fiber laser physics, electronics, and software development, using lan
guages such as Pascal, Modula-2, Oberon, C, Ruby, Nim, and Rust. Some of his software
projects, including the Nim GTK GUI bindings and Nim implementations of an N-dimensional
RTree and a fully dynamic, constrained Delaunay triangulation, are freely available as open-
source projects at https://github.com/StefanSalewski.

ChatGPT and GPT-4

You might have already heard about ChatGPT, an AI (Artificial Intelligence) chatbot devel
oped by OpenAI. ChatGPT was launched as a prototype on November 30, 2022, and it quickly
garnered attention for its detailed responses and articulate answers across various domains
of knowledge.[1] Although this book was written by a human, parts of it could have potentially
been created by GPT, resulting in a more fluent tone and fewer spelling and grammar
errors.[2] As such, this book, or at least parts of it, could now be considered obsolete. While
ChatGPT still has some serious issues (it’s better not to ask it about the author of this book, the
creator of the Nim language, or other Nim core developers), it can provide very valuable
information on various topics. Despite Nim being relatively small compared to the current
mainstream languages, we were really surprised by how much ChatGPT already knows about
it. To utilize ChatGPT, registration with your real name and phone number is required. We
think that’s acceptable to prevent misuse. The basic service is still free. A professional ver

6

https://nimprogrammingbook.com
https://nimprogrammingbook.com
https://nimprogramming.com/
https://nim-lang.org/
https://github.com/nim-works/nimskull
https://github.com/StefanSalewski/NimProgrammingBook
https://github.com/StefanSalewski/NimProgrammingBook
https://github.com/StefanSalewski

sion, now also known as GPT-4, is available with a monthly payment, but the free basic ver
sion still functions. When you log in to the OpenAI homepage (https://chat.openai.com/auth/
login?next=/chat), you can ask the bot questions, have it create a simple Nim program for you,
fix errors in your program, or add comments. The bot might even be able to convert source
code from other languages to Nim. Or it can rephrase text, so you could feed ChatGPT a sec
tion from this book, and then request a rewrite for improved grammar or even expanded
content. Some possible tasks you can ask ChatGPT to do:

• Do you know the Nim programming language?

• What does the Nim statement 'echo 1 + 2' print to the screen?

• And can you guess what the Nim statement 'echo 1, 2' would print?

• Are you sure that the two arguments provided to the echo statement are separated with a
space?

• I just tested it. I run the Nim program 'echo 1, 2' called t.nim with the command 'nim r
t.nim' and it prints "12", so there is no space involved!

• Please create a Nim program, that prints the numbers one to 10 each on its own line.

• I will insert a small Nim program with issues into the prompt. Please fix it.

• [insert code here]

• Can you please add some comments to the source code?

Of course, you should not really trust the advice of ChatGPT. Currently, as of early 2023, it
thinks that the echo command automatically adds spaces between the printed values. Of
course, that is wrong, and we can convince ChatGPT of that. However, ChatGPT currently can
not remember what it has learned in a user dialog, so it repeats the same errors next time.
Note that ChatGPT was trained with data only until 2021, so it may not be aware of Nim 2.0
and other recent changes.

Below is a complete dialog with ChatGPT from early 2023:

I have one more question about the Nim programming language. The following code, which
is supposed to convert a string to an integer, does not compile. Can you fix it?
`var s: string = "123"; var i: int = int(s)`

Yes, the code you provided is not valid Nim syntax. In order to convert a string to an
integer in Nim, you can use the parseInt procedure from the strutils module.

Here is an example of how to use it:

import strutils

var s: string = "123"
var i: int = parseInt(s)
echo i # Output: 123

7

https://chat.openai.com/auth/login?next=/chat
https://chat.openai.com/auth/login?next=/chat

In this example, we import the strutils module, which provides the `parseInt`
procedure for parsing integers from strings. Then, we define a string `s` with the
value "123", and use `parseInt` to convert it to an integer, which we store in the
variable `i`. Finally, we use `echo()` to print the value of `i`.

Since spring 2023, GPT-4 has been available to paying subscribers, offering more helpful informa
tion and less irrelevant content.

We recently used GPT-4 to create a short Nim info page: https://nimprogramming.com/

[1] https://en.wikipedia.org/wiki/ChatGPT

[2] Actually, we feed the complete final book content to GPT-4 asking for comment on possible grammar and spelling issues, and
additional advice to improve the text structure. These hints have been very helpful in fixing a few remaining mistakes and making
the text more fluent, easier to read, and understand.

8

https://nimprogramming.com/
https://en.wikipedia.org/wiki/ChatGPT

Part I: Introduction

Give me a video; I get a headache from reading.[1]

Initially, you do not need to know many details to use computers and write computer programs. It’s
much like driving a car. Even though a car is a complex machine, children can generally manage to
move it after a brief introduction. [2] Nevertheless, professional racing drivers typically require a
much deeper understanding of the inner workings of all the technical components, along with
extensive practice.

9

What is a computer?
A computer is primarily a device that runs computer programs by following instructions on how to
manipulate data.

Nearly all computers currently in use — from tiny ones integrated into electronic gadgets, to well-
known desktop computers (PCs), and large, powerful supercomputers filling entire rooms — work
internally with digital data only.[3] Digital data essentially comprises integer (whole) numbers
encoded in binary form, which are represented by sequences of the symbols 0 and 1. We will dis
cuss the term digital in more detail in the next section.

The most important part of a digital computer is the CPU, the Central Processing Unit. This tiny
device, built of digital electronic circuits, can perform very basic mathematical and logical opera
tions on numbers, such as adding two numbers or determining whether one number is larger or
smaller than another. Most computer CPUs can only store a limited number of values internally,
which are lost when the power is switched off. Therefore, the CPU is typically electrically connected
to a RAM module, a Random Access Memory, which can store many more numbers and allows fast
access to these numbers, and to a hard disk or SSD device, which can permanently store the num
bers but does not allow such fast access. The stored numbers are most often simply referred to as
data; in essence, this data is nothing more than numbers, but it can be interpreted in various ways,
such as pictures, sounds, and more.

The traditional hard disk drives (HDDs), which store data electromechanically on rotating magnetic
disks, as well as the more modern variants, the solid-state devices (SSDs), which store data using
modern semiconductor technologies, can store data persistently for longer time periods, even when
no electric power supply is available. Both SSDs and HDDs can be optionally split into multiple par
titions; for example, one or multiple OS partitions for executable programs or pure data partitions
for passive data such as text files or pictures. Before use, each partition is generally formatted, at
which point a file system (FS) is created. These two steps create an internal structure on the storage
device, which allows us to store and retrieve individual data blocks like programs, text files, or pic
tures.

Nearly all of today’s desktop computers, as well as most notebooks and cellphones, contain not just
a single CPU, but multiple CPUs, also known as cores. This enables them to run different programs
in parallel or parts of a single program on different CPUs to increase performance and reduce total
execution time. So-called supercomputers can contain thousands of CPUs. Besides CPUs, most com
puters also have at least one GPU, a Graphic Processing Unit, that can be used to display data on a
screen or monitor, maybe for doing animations in games or for playing video. The distinction
between CPUs and GPUs is not clear-cut. Usually, a CPU can also display data on screens and moni
tors, and GPUs can also perform some data processing tasks that CPUs can handle. However, GPUs
are optimized for the data display task.

More visible to the average computer user are the peripheral devices such as a keyboard, mouse,
screen, and perhaps a printer. These enable human interaction with the computer, but they are not
core components — the computer can function effectively without them. In notebooks, laptop com
puters, or cell phones, the peripheral devices are closely integrated with the core components. All
the physical parts of a computer are also called hardware, while the programs running on that
hardware are called software.

10

A less visible, but equally important, class of computers consists of microcontrollers and so-called
embedded devices. These are typically tiny units encased in black plastic with some electrical con
tacts. The devices can contain all necessary elements, i.e., the CPU, some RAM, and persistent stor
age that can store programs and data when no electric power supply is available. Although these
devices may be limited in computing power and the amount of data they can store and process,
they are incorporated in many consumer devices. They control your washing machine, refrigerator,
television, radio, and others. Some devices in your home may even contain multiple microcon
trollers and often the microcontrollers can already communicate with each other by RF (Radio-Fre
quency), or access the Internet by WLAN, which is sometimes called the Internet of Things (IoT).

Another class of large, very powerful digital computers — known as mainframe computers or super
computers — is optimized to process large amounts of data very quickly. The key to their enormous
computing power lies in many fast CPUs working in parallel; problems or tasks are split into many
small parts that are solved by individual CPUs, and the final result is the combination of all these
solved sub-tasks. However, it is not always possible to split large problems into smaller sub-tasks.

Digital computers usually operate based on a clock signal that pulses at a certain frequency; the
number of clock pulses per second is called the clock rate. The CPU can perform simple operations,
such as the addition of two integers, at each pulse of the clock signal. For more complicated opera
tions, such as multiplication or division, it may need more clock pulses. Therefore, a rough measure
of a computer’s performance is the clock rate divided by the number of pulses that the CPU needs to
perform a basic operation, multiplied by the number of CPUs or cores that the computer can use.

A completely different type of computer is the quantum computer. This is a large, expensive high-
tech device that uses the principles of quantum mechanics to execute many computations simulta
neously. Only a few of them exist today, for research at universities and some large commercial
institutes. Quantum computers may fundamentally change computing and our entire world some
day, but they are not the topic of this book.

[1] https://irclogs.nim-lang.org/19-03-2023.html#00:04:26

[2] Interesting GPT-4 comment: This sentence is incorrect and potentially dangerous as it suggests that children can drive cars after
a very short introduction. In many countries, it’s illegal for children to drive. It’s also unrealistic to suggest that anyone could learn
to drive properly in 3 minutes.

[3] In the past, some forms of analogue computers existed. Some worked mechanically, while others used analogue voltages or cur
rents as input and output signals. Indeed, one important device that is still very common in analogue electronics is the summing
amplifier, which can sum up multiple electric voltages.

11

https://irclogs.nim-lang.org/19-03-2023.html#00:04:26

Analogue and digital
Whenever we measure a quantity using a base unit, thus providing a certain level of granularity,
we operate within the digital realm. Our ordinary money is digital, as the cent is the smallest base
unit; you will never pay a fraction of a cent for something. Time can be considered as a digital
quantity as long as we accept the second as the smallest unit. Even on so-called analogue watches,
the second hand generally moves forward in one-second increments, making it impossible to mea
sure fractions of a second with such a watch.

An obvious analogue property is the thermodynamic temperature, and its classic measurement
device is the well-known capillary thermometer, consisting of a glass capillary filled with alcohol or
liquid mercury. When temperature increases, the liquid in a reservoir expands more than the sur
rounding glass and partly fills the capillary. That filling rate is an analogue measure of the tempera
ture.

While the hourglass is considered digital (as you can count the tiny sand grains), the sundial is not.

Most quantities in the real world appear to be analogue, and digital quantities are often perceived
as an arbitrary approximation. However, quantum mechanics has taught us that many quantities in
our world do have a granularity. In physical terms, quantities such as energy or momentum are
multiples of the tiny Planck constant. Or consider electric charge, which is always a multiple of the
elementary charge unit of a single electron. Whenever electrical current flows through a conductor
such as a wire, an ionized gas, or an electrolyte like saltwater, it does so in multiples of the elemen
tary charge, not in fractions of it. And of course, light and electromagnetic radiation also have some
form of granularity, which the photoelectric effect, as well as Compton scattering, proves.

An important and useful feature of digital signals and data is their direct correlation to integers
(integral numbers).

The simplest form of digital data is binary data, which can only have two distinct values. When you
use a mechanical switch to turn the light bulb in your house on or off, you change the binary state
of the light. Your neighbor, when watching your house, receives binary signals.[1]

Digital computers generally use binary electric states internally — voltage or current on or off. Such
an on/off state is called a bit. We will discuss more details about bits and binary logic later. One bit
can obviously store only two states, which we may map to the numbers 0 and 1. Larger integer
numbers can be represented by a sequence of multiple bits.

The Morse code was an early application used to transmit messages encoded in binary form.

A crucial characteristic of digitally encoded data is its ability to be copied and transmitted without
loss of precision. The reason for this is that digital numbers have a well-defined clean state, there is
no noise overlaying the data that could accumulate when the data is copied multiple times. Well,
this statement isn’t entirely accurate — under poor conditions, noise can become significant enough
to alter the binary state of signals. Imagine trying to transfer some whole numbers encoded in
binary form, perhaps by binary states represented as voltage levels 0 Volt and 5 Volts, over an
electric wire across a long distance. Clearly, the long wire can act as an antenna and pick up electro
magnetic noise, which could potentially shift the true 0 Volt data to a voltage closer to 5 Volts, lead
ing to incorrect reception. To detect these types of transmission errors, checksums are added to the

12

actual data. A checksum, derived from the original data using a special mathematical formula, is
transferred with it. The receiver applies the same formula to the received data and compares the
result with the received checksum. If they do not match, it is clear that the data transmission is cor
rupted, and a resend is requested.

The opposite of digital is generally called analogue, a term that is used for data that has or seems to
have no granularity. For example, we speak of an analogue voltage when the voltage can assume
any value in a given range, and when it does not "jump" but changes continuously.[2] To observe
analogue voltages or currents, one can use a moving coil meter, a device in which the current flow
ing through a coil in a magnetic field causes the magnetic force to move the hand/pointer.

As mentioned in the previous section, nearly all of our current computers work exclusively with
digital data. Essentially, this means they work internally with integer numbers, stored in sequences
of binary bits. All input for computers must have the form of integer numbers and all output takes
the form of integer numbers. Whenever we need to input analogue data into computers, such as
analogue voltage, we must convert it into a digital approximation. For that task, special devices
called analogue to digital converters (ADC) exist. And in some cases, we have to convert the digital
output data of computers to analogue signals, like when a computer plays music: The digital data
output from the computer is then converted by a device known as a digital to analogue converter
(DAC) into an analogue voltage. This analogue voltage generates a current that flows through a coil
in our speakers. This electric current in turn generates a magnetic field, which exerts mechanical
forces that move the speaker’s membrane. The resulting oscillating movements produce variations
in air pressure that our ears detect, and that we perceive as sound.

[1] Well, when we watch very carefully, we will notice that the signal is not really digital — when we switch on, the filament may
take a few milliseconds to heat up, and when we switch off, it takes the filament a few milliseconds again to cool down.

[2] Of course, even digital electric signals cannot really "jump" from one digital state to another, but the transition time is much
shorter than the time duration of the steady state, so the signal has a rectangular shape when we watch it on an oscilloscope; it
looks like __--__--__.

13

What is an operating system?
Most computers, from cellphones to large supercomputers, use an operating system (OS). A well-
known OS is GNU/Linux. An operating system can be seen as the initial program that is loaded and
started when we switch the computer on, functioning as a kind of supervisor:[1] it can load and exe
cute other programs, distributing resources like CPU cores or RAM among multiple running pro
grams. It also manages user input via the keyboard and mouse, displays output data on the screen
in both textual and graphically forms, controls how data is stored in nonvolatile storage media like
hard disks or SSDs, oversees all network traffic, among other tasks. An important role of the OS is
enabling user programs to access all the various hardware components, regardless of vendor, in a
uniform, high-level manner. An OS can be seen as an intermediary layer between user programs,
such as a text processor or a game, and the computer’s hardware. The OS allows user programs to
work on a higher level of abstraction, so they do not need to know much about the low-level hard
ware details.

An important feature of most modern operating systems is their ability to run multiple system and
user programs concurrently or in parallel. Concurrent execution of programs means that the execu
tion swiftly switches between all active programs. In this way, the user does not notice when pro
grams pause for short time intervals. All programs appear to be running continuously, though not
necessarily at full speed. True parallel execution of programs, meaning they can all run continu
ously at full speed, is only possible when the computer has multiple CPUs or a CPU with multiple
physical cores.

Computer operating systems generally have a close relationship with software libraries. Libraries
are software components that provide data types and functions through a well-defined interface,
known as an Application Programming Interface (API), and exhibit specific behaviors. Libraries can
either be part of the OS, or they can function largely independently of it.

Libraries can be utilized as shared libraries, which are single binary files stored on a computer’s
file system — often with the .so or .dll file extension — and are accessible by different computer
programs simultaneously. They can also be used as static libraries, which are an integral part of
individual programs. Shared libraries have some advantages: we need only one instance of them on
the file system of the computer, and the library is loaded only once into the computer memory
(RAM), even when it is used by different apps simultaneously. This saves space, and when the
library has serious errors, it is in principle possible to replace the library with a corrected version,
which is then used by all the software on the computer. Shared libraries often come in numbered
versions, where a higher number denotes a newer, improved, or extended library version. Some
times, some of the programs we use may still need an older library version, while other software
already needs a newer one. In that case, our file system has to provide multiple versions of a shared
library, each of which can be used independently. On the other hand, statically linked libraries are
directly glued with a single computer program. This simplifies the distribution of the program, as it
can be shipped as a single entity without the need to ensure that all the necessary dynamic libraries
are available on the destination computer. However, if a statically linked library has serious errors,
then we have to replace all the programs that are linked statically with that corrupted library.

Small microcontrollers and embedded devices often do not require an operating system as they
generally run only one single-user program and typically lack a wide variety of hardware compo
nents for support.

14

[1] Well, before the OS is loaded and starts execution, often another tiny program called a Boot Manager is launched. Boot man
agers are used to select different operating systems to boot, such as Linux or Windows, or to pass parameters like the hard disk
boot partition number to the OS.

15

What is a user interface?
To interact with the OS and the application programs running on the computer, we need some form
of user interface. Traditional user interfaces are text-centric and often provided directly by the OS
as one single text screen filling the whole display: The user has to enter textual commands and the
computer reacts with textual messages. For entering commands and data, a keyboard, whose layout
was heavily inspired by the classical mechanical typewriter, is used. For about half a century now,
graphical user interfaces (GUIs) have mostly replaced, or at least supplemented, textual user inter
faces for desktop computers. Even cellphones and other electronic gadgets now use a form of GUI
for user interaction. For large mainframe computers, the textual user interface is still common.
Graphical user interfaces display sets of icons or widgets to the user. These are often arranged
within rectangular graphical boxes, known as windows. These windows can be moved around,
resized, and partially or fully overlapped with other windows. A special type of window, known as
a terminal, shell, or console window, behaves like the traditional full-screen textual user interfaces.
Graphical user interfaces allow users to interact with the computer through simple actions like
clicking on buttons or using drag or swipe gestures, performed directly on a touch-sensitive display
or with a device called a mouse, which mirrors its mechanical movement on the table to a graphical
cursor on the computer display, and provides a set of pushbuttons that are used to initiate a click
action when the mouse pointer hovers over an icon or widget. The main advantage of graphical
user interfaces is that the user does not have to remember and type in long command sequences. A
set of on-screen buttons labeled with single letters can simulate a traditional keyboard, but a physi
cal keyboard is still used when the input of longer textual data is required. Graphical user inter
faces are sometimes enhanced by speech recognition systems, which allow users to enter com
mands or textual messages vocally. Graphical user interfaces may appear to be strongly coupled
with the OS, but they are still system programs executed by the OS. For the Microsoft Windows OS
and the macOS, this distinction is not very obvious, as the same GUI is running permanently. For
other operating systems, like Linux, the distinction is more apparent. Linux systems are sometimes
used without a GUI, and various GUI toolkits, such as Gnome, KDE, and many others, are available.

16

What is computer programming?
Computer programming involves the creation, testing, and optimization of computer programs.

17

What is a computer program?
A computer program is essentially a sequence of numbers that are meaningful to a computer CPU.
The CPU recognizes these numbers as instructions or numeric machine code, such as the instruction
to add two numbers. The first computers, built in the 1950s, were programmed by feeding
sequences of plain numbers to the device. The numbers were stored on what were known as punch
cards. These were made of strong paper and the numbers were encoded through holes in the cards.
The holes could be recognized by electrical contacts to feed the numbers into the CPU. Since plain
numbers do not align well with human cognition, more abstract codes were soon developed and
used. A very direct code that matches numerical instructions to symbols is known as the assembly
language. In that language, for example, the character sequence "add A0, $8" may map directly to a
sequence of numbers which instructs the CPU to add the constant integer number 8 to CPU register
A0, where A0 is a storage area in the CPU where numbers can be stored. As many different types of
CPUs exist, each with their own instruction sets, there are also many different assembly instruction
sets. These have similar, but not identical instructions. The rules that describe how these basic
instructions have to look are called the syntax of the assembly language.

Numerical machine code, and its equivalent assembly language, form the most basic instruction set
for a CPU. Each command that a CPU can execute corresponds to a well-defined assembly instruc
tion. Thus, any operation that a computer can potentially execute can be represented as a series of
assembly instructions. However, complicated tasks may require millions of assembly instructions,
which would take humans a significant amount of time to write, modify, proofread, and debug.[1]

A few years after the invention of the first computers, the need for more abstract instruction sets
was recognized. These would include features such as repeated execution, composed conditionals,
and the ability to use data types beyond plain numbers as operands. As a result, higher-level pro
gramming languages such as Algol, Fortran, C, Pascal, and Basic were created.

[1] The search for the reason why a program does not do exactly what was hoped for by its creators is called debugging. That term
is still a legacy from the very first computers in the 50s, where logical circuits were built by mechanical relays, for example, a logi
cal and operation was built by two relays in a series connection. To let the current flow, both of them would have to be in the con
ducting state. And it was told that sometimes insects walked onto the electric contacts of the relays and blocked them. Today, mis
behavior of computer programs is rarely due to hardware faults, but the term "bugs" for errors and "debugging" for finding and
fixing the errors, was kept.

18

What is an algorithm?
An algorithm is a detailed sequence of instructions, often abstract, designed to solve a specific task
or to reach a goal.

Recipes from cookbooks and car repair instructions are examples of algorithms. The basic math
operations children learn in school, such as adding, multiplying, or dividing two numbers with a
paper and pencil, are also examples of algorithms. Even starting a car follows an algorithm. For
instance, if the temperature is below freezing and your vehicle is covered in snow, your first step
would be to clean the windows and lights. Similarly, if you’re driving again after a long break, you
would have to check the tires before you start the engine. You can execute an algorithm by strictly
following its instructions, without necessarily understanding its underlying principles.

So an algorithm is a perfect fit for a computer, as computers are excellent at following instructions
without really understanding what they are trying to accomplish.

An algorithm for calculating the sum of the first 100 natural numbers might look like this:

use two integer variables called i and sum
assign the value 0 to both variables

while i is less than 100 do:
 increase i by one
 add value of i to sum

optionally print the final value of sum

19

What is a programming language?
Most traditional programming languages were designed to translate algorithms into elementary
CPU instructions. Algorithms typically contain nested conditionals, repetition, math operations,
recovery from errors, and potentially plausibility checks. A complex algorithm can generally be
split into various separate logical parts. These may include reading in data at one point, performing
multiple processing steps at another, and storing or displaying data as plain text, graphics, or ani
mation at yet another point. This division into parts is reflected in programming languages through
the grouping of tasks into subroutines, functions, or procedures, which accept a set of input para
meters and can return a result.

As algorithms often work not only with numbers but also with text, it makes sense to have a form
of textual data type in a programming language too. Data types can also be grouped in various
ways. For example, as sequences of multiple data of the same type, like lists of numbers or names.
Alternatively, collections of different types can be created, such as the name, age, and profession of
a citizen in an income tax database. Programming languages provide support for all these use
cases.

20

Compilers and interpreters
We already learned that the CPU in the computer can execute only simple instructions, which we
call numeric machine code or assembly instructions.

To run a program written in a high-level language that includes many abstractions, we need some
kind of converter to transform that program into the basic instructions that the CPU can execute.
For the conversion process, we essentially have two options: we can either convert the entire pro
gram into machine code, store it on disk, and then run it on the CPU, or we can convert it in small
portions, maybe line by line, and run each portion as soon as we have converted it. Tools that con
vert the whole program first are called compilers. Compilers process the program that we have
written, incorporate necessary library modules from other sources, check the code for obvious
errors, and then generate the machine code, which we can then store and run. Typically compilers
create executables that are customized for a specific CPU architecture and a single operation sys
tem. A program compiled for a x86 CPU and the Windows OS could not be run on a Linux box with
an ARM CPU. Often, recompiling the source code for another target architecture is possible, but
modifications to the source code may be necessary. Program code that has to be compiled can be
distributes as textual source code, or as precompiled binary. For source code distribution, the tar
gets systems needs a matching compiler, and for binary distribution, the binary has to match the
CPU and the OS of the target system.

Tools that process the source code in small portions, like single statements, are called interpreters.
They read a line of source code, investigate it to check if it is a valid statement, and then feed the
CPU with corresponding instructions to execute it. The difference between compilers and inter
preters is similar to two methods of picking strawberries: you can either pick one and eat it imme
diately, or you can collect them all into a basket to eat later. Interpreted program code is typically
distributed as textual source code and can in principle be run on each system with an matching
interpreter. But in practice, it is not that easy: The code may use functionality that is only available
for a specific OS, or the code may require a specific interpreter version.

Both interpreters and compilers have advantages and disadvantages for special use cases. Compil
ers are capable of detecting errors before the program is run, and compiled programs generally
execute quickly, as all the instructions are preprocessed and readily available when the programs
run. The compiling step takes some time, of course, at least a few seconds, but for some languages
and large programs, it may take much longer. This can slow down the software development
process because, as you add or change code, you must compile the whole program before you can
execute and test it. That can be inconvenient for beginner programmers, as they may have to do
this editing and testing process very often. Some adopt a programming style that involves changing
a tiny bit of the source code, running it, and observing the results. A more common practice, how
ever, is to first thoroughly consider the problem, then write the code which, in most cases, performs
nearly as intended. With this style of programming, you don’t need to compile and execute your
code as frequently. Compilers have one significant benefit: they can detect many bugs, primarily
typing errors, during the compilation phase and provide detailed error messages. Interpreters have
the advantage of enabling code modifications and immediate execution without any delay. This fea
ture is beneficial for learning a new language and for conducting quick tests; however, even simple
typing errors can only be detected when encountered during program execution. If your test does
not attempt to run a faulty statement, there will be no error, but it may surface later. Modern com
pilers use various techniques to enable also nearly immediate test when a part of the source code

21

has been modified: Fast compilers, often running in parallel on all available CPUs, combined with
caching and incremental compilation, makes the compilation step extremely fast. Additional, a
technique called hot code reloading enables the exchange of parts of the program code without
interrupting the program execution.

Generally, the execution of interpreted programs is much slower than that of compiled executables,
as the interpreter has to continually process the source code in real-time as it’s being run, while the
compiler does it only once before the program is run. To conclude this section, here are a few addi
tional notes:

Compilers are sometimes paired with entities known as linkers. In such instances, the compiler
transforms the source code, which may reside in multiple text files, into a sequence of machine
code instructions. Subsequently, the linker amalgamates all these machine code instructions to
form the final executable. Some compilers either do not require the linking step or automatically
invoke the linker. Moreover, some interpreters convert the textual source code into so-called byte
code in a very fast, initial preprocessing step ("on the fly"), which can then be interpreted faster.
Languages such as Ruby and Python employ this method. The Java language uses a mix of compila
tion and interpretation: In a first step, the Java source code is compiled into an intermediate JAR
code format. This JAR file can be distributed and executed by Java’s virtual machine (JVM). The JVM
acts as an intermediate layer between the hardware and the user program, and the JVM can even
further optimize the code while it is run on the target machine.

22

Types of programming languages
Software can be crafted in numerous styles. A programming paradigm is a fundamental style of
writing software, and each programming language supports a specific set of these paradigms. A
popular paradigm is object-oriented programming (OOP), a concept taught in many introductory
computer science courses. Other paradigm are procedural and functional programming.

We have already mentioned assembly languages, which provide only the basic operations that a
CPU can perform. Assembly languages offer no abstractions, so it’s debatable whether we should
categorize them as programming languages at all. Then, there are low-level languages like Fortran
or C, which, while providing some basic abstractions, still work close to the hardware. These lan
guages are primarily designed for high performance and low resource consumption (RAM), but
they don’t prioritize detecting and preventing programming errors or simplifying the programming
process. These languages already support some higher-order data types, like floating-point num
bers or text (strings), as well as homogeneous, fixed-size containers (called arrays in C), and hetero
geneous fixed-size containers (called structs in C).

A different approach is taken by languages like Python or Ruby, which aim to make writing code
easier by offering many high-level abstractions. They provide better protection against errors but
are not as efficient. These languages also support dynamic containers, which can grow and shrink,
or advanced data structures like hash tables (maps) or support textual pattern matching by regular
expressions (regex).

Another way to differentiate programming languages is by their typing system, which can either be
static or dynamic. Ruby, Python, and JavaScript are all examples of dynamically typed languages.
This means that they use variables capable of storing any data type. Therefore, the data type that a
variable accepts can dynamically change during program execution. This appears to be user-
friendly and often it is, particularly for brief programs intended for single-use, occasionally
referred to as scripts. However, dynamic typing can make discovering logical errors more challeng
ing. For instance, an illegal addition of a number to a letter may only be detected at runtime.
Dynamically typed languages generally consume a lot of memory and their performance tends not
to be as efficient. It’s akin to owning a set of large, equally-sized moving boxes and storing each
piece of our belongings in separate boxes.

In statically typed languages, each variable has a well-defined data type such as integer number,
real number, a single letter, a text element, and many more. The data type is either assigned by the
author of the program with a type declaration, or is detected by the compiler itself when processing
the program source code, a process called type inference. In this context, the variable’s type never
changes. In this way, the compiler can check for logical errors early in the compile process, and the
compiler can reserve memory blocks exactly customized to the variables that we want to store, so
total memory consumption and performance can be optimized. Referring again to the box analogy,
static typing is akin to using customized boxes for all your belongings.

All these types of programming languages are often called imperative programming languages, as
the program specifies exactly what the computer has to do. There are also other types of program
ming languages, such as Prolog, which primarily provide a set of rules and then allow the computer
to solve problems using these rules.

23

Moreover, there are emerging concepts like artificial intelligence (AI) and machine learning (ML).
They rely less on algorithms and more on neural networks, which are trained with extensive data
until they can yield the desired results. Nim, the computer language that this book focuses on, is an
imperative language. As such, our focus will be on the imperative programming style. However, it’s
worth noting that Nim can be used to create AI applications.

Additionally, we can distinguish between languages such as C, C++, Ada, Rust, D, Go, Nim, and many
more that compile to native executables and can run directly on the computer’s hardware. In con
trast, languages like Java, Scala, Kotlin, Julia, among others, use a large virtual machine (VM) as an
intermediary between the program and the hardware, as do interpreted languages like Ruby and
Python. Languages that use a virtual machine generally require some startup time when a program
is invoked, as the VM needs to be loaded and initialized. Also, interpreted languages are typically
slower.[1] The distinction between languages that compile to native executables, and those that are
executed on a virtual machine, is not really sharp. For instance, Kotlin and Julia initially ran on a
virtual machine, but they can now compile source code to native executables. And new develop
ments, such as the Mojo languages, claims to be able to execute ordinary Python code, as well as to
compile code with added type annotations to fast machine code.

An important class of programming languages is the group of so-called Object-Oriented-Program
ming (OOP) languages, which use classes with attached methods, and typically reference semantics,
polymorphism, and inheritance with dynamic dispatch. OOP languages became very popular in the
1990s. For some time, it was assumed that Object-Oriented-Programming was the ultimate solution
for managing and structuring large programs. Java is a prominent example of OOP languages. It
requires programmers to use the OOP design, and other languages such as C++, Python, and Ruby
also strongly encourage the use of the OOP design. Experience has shown that the OOP design is not
the ultimate solution for all computing problems, as it can make the code verbose and might hinder
optimal performance. So newer languages, like Go, Rust, and Nim, support some form of OOP pro
gramming but use it only as one paradigm among many others.

Another popular and important class of programming languages includes JavaScript and its more
modern extensions, like TypeScript, among others. JavaScript was designed to run in web browsers
to support interactive web pages, as well as programs and games running in the browser. In this
way, programs become nearly independent of the computer’s native operating system. Note that
despite what the name may suggest, JavaScript is not closely related to the Java language. Since Nim
can compile to a JavaScript backend, it offers robust support for web development.

Finally, perhaps the most important criterion for choosing a language for a programming task is the
handling of memory and other resources. Allocating memory blocks, and releasing them again
when they are not needed anymore, can be a serious effort, and doing it wrong can lead to various
bugs, like free-after-use or memory leaks. The original Pascal compiler had no function to release
memory at all, which may have been a simple strategy to avoid this difficult matter. C does all the
memory- and resource-handling manually, which is one reason why C programming is difficult,
and C programs often have serious bugs. The C++ language handles most memory and resource
management by scope-based destructors, but still supports manual memory- and resource handling
like C. Rust is similar to C++ in this regard, but has advanced features like the borrow-checker. Fully
automatic memory management is a difficult topic and can generate overhead or delay in program
execution. This is why some modern languages, like Zig, Odin, and Jai, avoid automatic memory
handling. Other languages like Python, Java, JavaScript, C#, Julia, Go, and D use some form of
garbage collector, which makes life for the programmers much easier and avoids all the memory-

24

management-related bugs.

Nim was initially designed to use a garbage collector, with an option for manual memory manage
ment in critical areas. However, since version 1.0, Nim additional supports ORC/ARC memory han
dling, a form of scope- and destructor-based automatic memory management. ARC can be used
when our memory blocks have no cycles, which is often the case. And ORC can handle additional
cyclic structures. ARC and ORC may not yet provide optimal throughput compared to the older
Garbage Collector, referred to as REFC. However, they avoid delayed deallocation and delays in pro
gram execution, making them good choices for critical code like device drivers and games.

Table 1. Overview of popular programming languages. Here we list only languages similar to Nim, and
ignore languages with dynamic typing like Python, Ruby, JavaScript, and also Java with its rigid OOP
design.

Lan
guage

Para
digm

Typing
disci
pline

Syntax Execu
tion

Memory
Manage
ment

Generics Macros,
Meta-
program
ming

Modules

C Impera
tive, pro
cedural,
struc
tured

Static,
weak

Braces,
semi
colons

Native Manual No Text pre
processor

No

C++ Impera
tive, pro
cedural,
struc
tured,
object-
oriented

Static,
weak

Braces,
semi
colons

Native Destruc
tors, RAII,
manual,
optional
GC

Yes, Tem
plates

Text pre
processor

C++20

Nim Impera
tive, pro
cedural,
struc
tured,
func
tional,
object-
oriented

Static,
strong,
inferred

Python-
like (off-
side rule)

Native,
web
browser
(JavaScri
pt)

GC, ref
count,
destruc
tors

Yes AST
based,
hygienic

Yes

25

Lan
guage

Para
digm

Typing
disci
pline

Syntax Execu
tion

Memory
Manage
ment

Generics Macros,
Meta-
program
ming

Modules

Rust Impera
tive, pro
cedural,
struc
tured,
func
tional,
object-
oriented

Static,
strong,
inferred

Braces,
semi
colons

Native Destruc
tors, bor
row-
checker

Yes AST
based,
hygienic

Yes

D Impera
tive, pro
cedural,
struc
tured,
func
tional,
object-
oriented

Static,
strong,
inferred,
generic

Braces,
semi
colons

Native GC,
destruc
tors,
manual

Yes Yes Yes

Go Impera
tive, pro
cedural,
struc
tured,
func
tional,
composi
tion

Static,
strong,
inferred

Braces,
semi
colons

Native GC No No Yes

Zig Impera
tive, pro
cedural,
struc
tured,
func
tional,
(object-
oriented)

Static,
strong,
inferred,
generic

Braces,
semi
colons

Native Manual,
option
types

(Yes) No Yes

Sometimes, source code written in one programming language is converted into another one.
A prominent target for such conversions is JavaScript, as JavaScript enables the execution of
programs in web browsers. Another important target language is C or C++. Creating interme
diate C code, which is then compiled by a C compiler to native executables, has some advan

26

tages compared to direct compilation to native executables: C compilers exist for nearly all
computer systems including microcontrollers and embedded systems, so the use of the origi
nal language is not restricted to systems for which a native compiler backend is provided.
And C as intermediate code simplifies the use of system libraries, which typically provide a C-
compatible interface. Due to decades of development, C compilers generally can do better
code optimizations than young languages may manage to do. Some people fear that interme
diate C code carries the problems of the C language, like verbosity, confusing and error-prone
code, or undefined behavior, to the source languages. But these well-known concerns of C
occur only when humans write C code directly, just as when they write assembly code
directly. Automatic conversions are well-defined and well-tested, which means these conver
sions are free of errors to the same degree as direct machine code generation would be. But
indeed there are some small drawbacks when C or C++ is used as a backend for a program
ming language: C does not always allow direct access to all CPU instructions, which may make
it difficult to generate optimal code for some special constructs like exceptions. And C uses
wrap-around arithmetic for unsigned integer types, which may not be what modern lan
guages desire. The current Nim implementation provides JavaScript, C, and C++ backends.
While the JavaScript backend is a design decision to enable web development, the C and C++
backends are a more pragmatic decision and could be later replaced or at least supported by
direct native code generation or use of the popular LLVM backend.[2] When computer lan
guages are converted from one to another, the term transpiler is sometimes used to differenti
ate the translation process from direct compilation to a binary executable. When program
code is converted between very similar languages with nearly the same level of abstraction,
then the term transpiler may be justified. However Nim is very different from C and has a
higher abstraction level, and the Nim compiler performs many advanced optimizations. So,
even when compiling to JavaScript or the C++ backend, it should not be referred to as a tran
spiler.

[1] Exactly speaking, Ruby and Python do not really interpret the source code but compile it on the fly to byte-code, which is then
interpreted. And there exist some variants of Ruby and Python that compile with some success to native machine code. Crystal is a
variant of Ruby, with some significant differences, that compiles to fast native machine code.

[2] Indeed, an experimental LLVM backend is already available by third-party contributors.

27

Why Nim?

In this section, we use many new Computer Science (CS) expressions but do not
explain them. This is intentional; if you already know them, you may gain a better
understanding of what Nim is. If you do not know them, you will at least learn that
we can describe Nim using complex terms.

Three well-known traditional programming languages are C, Java, and Python. C, created in 1972, is
essentially a simple language that operates close to the hardware. Compilers can generate fast,
highly optimized native machine code for C. However, C has cryptic syntax, some peculiar seman
tics, and it lacks the higher concepts of modern languages. Java, created in 1995, strongly encour
ages the object-oriented style of programming (OOP) and runs on a virtual machine. This makes it
unsuitable for embedded systems and microcontrollers. Python, created in 1991, is generally an
interpreted language rather than a compiled one, which results in slower program execution. Both,
Java and Python, do not effectively support writing of low-level code that operates close to the hard
ware, making them unusable for device-driver and kernel development. Because many Python
libraries are written in highly optimized C, Python can appear quite fast when performing standard
tasks, such as sorting data, processing CSV or JSON files, or crawling websites. Therefore, Python is
not a poor choice when primarily used for calling library functions. However, its performance defi
ciencies become evident when custom Python code is required to solve a problem.

Of course, there are many more programming languages, each with its own advantages and disad
vantages, and some are optimized for specific use cases.

Nim is a state-of-the-art programming language well-suited for systems and application program
ming. Its clean Python-like syntax makes programming easy and enjoyable for beginners, without
imposing any restrictions on experienced systems programmers. Nim combines successful concepts
from mature languages like Python, Ada, and Modula with a few established features of the latest
research. It offers high performance with type and memory safety while keeping the source code
short and readable. Both the compiler and the generated executables support all major platforms,
including Windows, Linux, BSD, and macOS. Cross-compiling to Android and other mobile and
embedded devices and microcontrollers is possible, and the JavaScript backend allows the creation
of web apps and to run programs in web browsers. The custom package managers, Nimble, Nimph
and Atlas, facilitate the easy and secure use and redistribution of programs and libraries. The C,
C++, and LLVM-based backends enable easy OS library calls without additional glue code, while the
JavaScript backend generates high-quality code for web applications. The integration of the
"Read/Eval/Print Loop" (REPL), "Hot code reloading", and incremental compilation (expected for
versions > 2.0), along with support for various development environments — including debugging
and language server protocols — make working with Nim both productive and enjoyable.

Some facts about Nim
* Nim is a multi-paradigm programming language. Unlike some popular programming languages,
Nim doesn’t predominantly focus on the OOP paradigm. It’s primarily an imperative and proce
dural programming language, but it also supports OOP, data-oriented, functional, declarative, con
current, and various other programming styles. Nim supports common OOP features, which
include inheritance, polymorphism, and dynamic dispatch.

28

• The generated executables are small and dependency-free. For instance, a simple chess pro
gram with a plain GTK-based graphical user interface is only 100 KB in size,[1] and the Nim com
piler executable itself is approximately 6.5 MB. It is possible to shrink the executable size of
"Hello World" programs to about 10 KB for use on tiny microcontrollers.

• Nim is fast, with its performance typically rivaling that of other high-performance languages,
such as C or C++. There are still some exceptions: other languages may have libraries or applica
tions that have been tuned for performance for many years, while similar Nim applications are
so far less tuned for performance, or are perhaps written with more priority on short and clean
code or run-time safety.

• Nim has a clean, Python-like syntax characterized by significant whitespace. There’s no need for
block delimiters such as {} pairs or begin/end keywords, and no need for statement delimiters
like ;.

• Safety: Nim programs are type- and memory-safe. The compiler prevents memory corruption as
long as unsafe low-level constructs, such as casts, pointers, the address operator, or the
{.union.} pragma, are not used.

• Nim boasts a fast compiler capable of compiling itself and other medium-sized packages in less
than 10 seconds. The upcoming incremental compilation feature could further increase this
speed.

• Nim is statically typed, meaning each variable or other entity has a well-defined type. This fea
ture catches most programming errors at compile-time, prevents run-time errors, and ensures
optimal performance. At the same time, the static typing makes it easier to understand and
maintain larger codebases.

• Nim supports various memory management strategies, including manual allocations for critical
low-level tasks, as well as various garbage collectors, including a destructor-based, fully deter
ministic memory manager.

• Nim produces native, highly-optimized executables and also has the capability to generate
JavaScript output for web applications.

• Nim has a clean module concept, which helps to structure large projects.

• Nim features a well-designed standard library that supports a multitude of basic programming
tasks. The full source code of the library is included and can be viewed easily from within the
HTML-based API documentation.

• Library modules, such as the os module, provide OS-independent abstractions. These allow for
the compilation and running of the same program on different operating systems without modi
fications.

• The Nim standard library is supplemented by over 1000 external packages for a wide range of
use cases. External packages can be installed easily with Nim’s package managers.

• Nim supports asynchronous operation, threading, and parallel processing.

• Nim supports all popular operating systems including Linux, Windows, macOS, and Android, as
well as various hardware types such as x86, ARM and RISCV procesors, including embedded
systems and micro-controllers.

• Utilizing external libraries written in C is straightforward, requiring no additional glue code.
Moreover, Nim can even work together with code written in other languages. For instance,

29

some Nim-Python interfaces are available.

• Many popular editors have support for Nim syntax highlighting and other IDE functionality like
on-the-fly checking for errors and displaying detailed information about imported functions
and data types.

• In the last few years, Nim has reached some important milestones: Version 1.0, which brought
some stability promises, has been released. Along with the ARC and ORC memory management
strategies and full destructor support, fully deterministic memory management comparable to
memory management in C++ or Rust is available. Therefore, problems associated with conven
tional garbage collectors, such as delayed memory deallocation or extended pauses in programs
due to the garbage collection process, are eliminated. And some larger companies have started
using Nim in production, the most influential is currently the Status Corp. with their Ethereum
client development.

Nim supports many programming styles
We have already mentioned that Nim is a multi-paradigm programming language that supports
various programming styles. While Nim can primarily be regarded as an imperative, procedural
programming language, it also effectively supports popular functional and object-oriented pro
gramming styles.

In classical OOP languages, such as Python, we have the concept of classes with attributes and meth
ods that are tightly bound to the classes:

class User:
 def say(self):
 print("It does not work!")

user = User()
user.say()

In this Python snippet, we define a class, User, with a custom method named say() attached to it. We
then create an instance, user, of this class and invoke its say() method.

This tight coupling of methods to classes lacks flexibility. For example, extending a class with addi
tional methods can prove difficult or, in some cases, impossible. Another challenge with this class
concept is determining the ownership of a method when multiple classes are involved. For
instance, if we need a method that appends a single character to a text string, would that method
belong to the character class or the string class?

Nim avoids such a strict class concept, while its generalized method call syntax allows us to use a
class-like syntax for all our data types. For example, to get the length of a string variable, we can
write len(myString) in classical procedural notation, or we can use the method call syntax myS
tring.len() or just myString.len. The compiler treats all these notations as equivalent, making the
method syntax available without the restrictions inherent to the class concept. The method call syn
tax can be used in Nim for all data types, even for plain numbers — so the notation abs(myNum) is
fully equivalent to myNum.abs.

30

The Python code from above might look like this in Nim:

type User = object

proc say(self: User) =
 echo ("It does not work!")

let user = User()
user.say()

Instead of classes, we use object types in Nim, and we define procedures and methods that can
work on objects or other data types.

As an example of the functional programming style in Nim, we could examine a code fragment
from a real-world app required to generate a string from four numbers, separated by commas.
Using the mapIt() procedure imported from the sᴇǫᴜᴛɪʟs module and the fmt() macro from the sᴛʀ
ғoʀᴍᴀᴛ module, we may write that in functional programming style in this way:

from std/strutils import join
from std/sequtils import mapIt
from std/strformat import fmt
const DefaultWorldRange = [0.0, 0, 800, 600]
let str = DefaultWorldRange.mapIt(fmt("{it:g}")).join(", ")
echo str # "0, 0, 800, 600"

In the imperative, procedural style, we would write it like

from std/strformat import fmt
const DefaultWorldRange = [0.0, 0, 800, 600]
var str: string
for i, x in pairs(DefaultWorldRange):
 str.add(fmt("{x:g}"))
 if i < DefaultWorldRange.high:
 str.add(", ")
echo str # "0, 0, 800, 600"

Nim is efficient
Nim is a compiled, statically-typed language. Unlike interpreted, dynamically-typed languages like
Python, where every statement must be run to check for errors, the Nim compiler catches most
errors during the compilation process. The static typing, in conjunction with Nim’s robust type sys
tem, allows the compiler to catch a majority of errors, such as undefined operations like adding a
number to a letter, during compilation. These errors are reported in the terminal window or
directly in the editor or IDE. When no errors are found or after all errors have been fixed, the com
piler generates highly optimized, dependency-free executables. This compilation process is typi
cally quite fast; for example, the compiler can compile itself in less than 10 seconds on a modern

31

PC.

Modern concepts such as zero-overhead iterators, compile-time evaluation of user-defined func
tions, and cross-module inlining, in combination with the preference for value-based, stack-located
data types, lead to extremely efficient code. Multi-threading, asynchronous input/output operations
(async IO), parallel processing, and SIMD instructions including GPU execution are supported. Vari
ous memory management strategies exist: selectable and tunable high-performance Garbage Collec
tors (GC), including a new fully deterministic destructor-based memory management system, are
supported for automatic memory management. These can be disabled for manual memory man
agement. This makes Nim a good choice for application development and close-to-the-hardware
system programming at the same time. The unrestricted hardware access, small executables, and
optional GC will make Nim a perfect solution for embedded systems, hardware drivers, and operat
ing system development.

Nim is expressive and elegant
Nim offers a modern type system with templates, generics, and type inference. Built-in advanced
data types such as dynamic containers, sets, and strings with full UTF support are complemented by
a large collection of library types like hash tables and regular expressions. While Nim supports the
traditional Object-Oriented Programming style with inheritance and dynamic dispatch, it doesn’t
enforce this paradigm, instead offering modern concepts such as procedural and functional pro
gramming. The optional method call syntax enables the use of all data types and functions in an
OOP-like fashion; for example, instead of len(myStr), we can also use the OOP style myStr.len.[2] The
powerful AST-based hygienic macro system offers nearly unlimited possibilities for the advanced
programmer. This macro and meta-programming system allows compiler-guided code generation
at compile-time. This way, the Nim core language can be kept small and compact, while many
advanced features are enabled by user-defined macros. For example, the support of asynchronous
IO operations has been created with these forms of meta-programming, as well as many Domain
Specific Language (DSL) extensions.

Nim is open and free
Both the Nim compiler and all modules of the standard library are implemented in Nim. All source
code is available under the permissive MIT license.

Nim has a community
The Nim forum is hosted at:

https://forum.nim-lang.org/

and the software running the forum is coded in Nim.

Real-time chat is supported by IRC, Gitter, Discord, Telegram, and others.

Nim also has a presence on Reddit.com and Stackoverflow.com:

• https://www.reddit.com/r/nim/

32

https://forum.nim-lang.org/
https://www.reddit.com/r/nim/

• https://stackoverflow.com/questions/tagged/nim-lang

Nim is evolving
Initiated over 15 years ago as a small community project by a group of bright CS students under the
leadership of Mr. A. Rumpf, Nim is now considered one of the most interesting and promising pro
gramming languages. Supported by countless individuals and leading companies in the computer
industry, Nim is actively used in the areas of application, game, web, and cryptocurrency develop
ment. Nim has made a large amount of progress in the last few years: it reached version Nim v2.0
with some stability guarantees and a new deterministic memory management system was intro
duced, which will enhance parallel processing support and the utilization of Nim in embedded sys
tems development.

Nim is not a virus
Because Nim is a powerful yet simple systems programming language, it has been exploited by a
few individuals to write malware in recent years. As a result, numerous Nim programs, including
the compiler and other official tools, frequently get falsely flagged as viruses on Windows. Unfortu
nately, this poses a serious issue for newcomers wishing to explore Nim, and it lacks an easy solu
tion. Nim developers have already reported this issue to Microsoft and other related companies, but
they appear to show limited concern about it. Advanced Windows users can manually disable virus
scans and potentially firewall protection. However, this can be seen as risky should a genuine Nim-
related virus ever emerge.

References:

• https://www.reddit.com/r/nim/comments/11cteg6/is_nims_site_hacked/

• https://forum.nim-lang.org/t/9850

• https://github.com/nim-lang/Nim/issues/17820

Why is Nim not a popular mainstream language yet?
Mr. A. Rumpf initiated the development of Nim in 2008, and since then, he, along with a handful of
volunteers, has been diligently advancing its development. Finally, in 2018, Nim got some signifi
cant monetary support from Status Corp., and in 2019, the stable Nim version 1.0 was released.
However, Nim is still developed by a small core team and some volunteers, while other languages
like Java, C#, Go, or Rust are supported by large companies, or, like C and C++, have a very long his
tory and well-trained users. Finally, there are many competing languages, some with a longer his
tory and some possibly better suited for special purposes, like JavaScript, Dart, or Kotlin for web
development, Julia or R for numeric applications, or Zig, C, and Assembly for the tiny 8-bit micro
controllers with a small amount of RAM.

While we’ve said that Nim can be used universally, from tiny microcontrollers to large desktop and
web applications, we must admit that its use for mobile devices with Android or iOS operating sys
tems is not as easy and well-documented. However, this applies to many other languages, including
popular ones like Python, Go, and Rust. The reason simply is that Android and iOS devices are not
really open systems. For example, Android is strongly coupled to Java or its new variant, Kotlin.

33

https://stackoverflow.com/questions/tagged/nim-lang
https://www.reddit.com/r/nim/comments/11cteg6/is_nims_site_hacked/
https://forum.nim-lang.org/t/9850
https://github.com/nim-lang/Nim/issues/17820

However, using Nim on Android and iOS devices is possible. Games and apps have already been
created for these devices. See https://github.com/treeform/glfm as an example.

Currently, Nim does not have a single perfect GUI library. Instead, there are a lot of attempts: Vari
ous GTK and Qt bindings, many web-based GUIs, a few simple, pure Nim GUIs, and the Fidget
project. The situation is currently not really satisfactory, but the same is the case for most other
modern languages like Go, Julia, Rust, and even Python. The exceptions are Dart with Flutter, per
haps C++ with Qt and the Java/Kotlin/Android bundle, and of course the commercial languages
Swift and C#.

Some people just prefer languages with full OOP support and true classes. While Nim does support
OOP design with heap-allocated reference objects, inheritance, and methods with dynamic runtime
dispatch, it does not strongly enforce its use. People educated in the 1990s might still be influenced
by the Java OOP hype and argue that classes make structuring larger programs easier.

Others detest all forms of automatic memory management and might believe that Rust’s borrow
checker or Zig’s C-like memory management suffices. In fact, Nim might not always match Rust’s
performance completely. And while Nim’s executables are already compact, Zig, being essentially
an improved C, provides no overhead to C libraries and might generate even smaller executables.

For some "professional" programmers, Nim’s use of significant white space instead of curly brack
ets for identifying blocks and scopes could be a reason to avoid Nim. The use of significant white
space, also called the Off-side rule,[3] has some tradition in computer textbooks and is used in some
other languages, like Python, Haskell, and Scala 3. With Python being the most popular program
ming language these days, it is hard to believe that programmers really prefer the use of curly
brackets. But actually, most professionals started their education with languages like C, C++, or Java,
and just feel more professional when they have their curly brackets. Scala introduced significant
white space in version 3 of the language, and its designer Martin Odersky said that this improves
productivity overall by 10%.[4]

Nim programmers usually import symbols from other modules unqualifiedly ("import std/strutils"
instead of "from std/strutils import …"). Fully qualified symbol import is possible (from std/strutils
import nil), but since Nim doesn’t use classes, this may make it difficult to use imported operators.
It could also cause issues with Nim’s method call syntax not working properly (strutils.toUp
perAscii(myStr) vs myStr.toUpperAscii). People coming from dynamically typed languages like
Python sometimes express concern about namespace pollution and symbol conflicts due to unqual
ified imports. Experience has shown that unqualified import isn’t an actual problem in Nim. This is
because procedure overload resolution typically works reliably when the proc parameter types are
not all identical. Conflicts may only occur in rare situations for constants or enumeration data
types. These are reported by the compiler and can easily be resolved by using module name pre
fixes when necessary. Nevertheless, some people worry and argue that fully qualified names make
it easier to see the origin of symbols.[5]

A similar point is the style-insensitivity of Nim: With the exception of the first letter of a symbol,
Nim does not distinguish between lower- and upper-case letters and ignores underscores. This
approach has some advantages and disadvantages, but in practice, it’s not as problematic as it
might seem. We will discuss it later in this book in more detail.

Not directly related to the Nim language itself, but to the user experience, is the programming envi

34

https://github.com/treeform/glfm

ronment or tooling: editors, IDEs, REPL (read–eval–print loop), package managers, and debugging
and profiling support. All this may not be as perfect as for other popular major languages yet.
Indeed, Nim’s language server support (based on nimsuggest) is not very reliable and tends to be
slow.

The language server support depends on compile times, as nimsuggest is some form of a Nim com
piler variant. So this may improve when Nim eventually receives incremental compilation support
(IC), expected in Nim 2.0 or later. Providing good language server support is generally hard for lan
guages with templates, generics, macros, and type inference — the Crystal language has similar
issues.[6]

However, all this tooling is more of an implementation detail and not a direct issue of the language.
Since Nim is a high-level language with very clear syntax, tooling should not be that important. Pro
grams that compile successfully generally just work, so there may not be a significant demand for
robust debugger support. In fact, Nim already has all of this tooling; it just doesn’t function as effec
tively as it could. [7]

Nim is already supported by more than 1000 external packages which cover many application
areas, but that number is still small compared to really popular languages like Python, Java, or
JavaScript. However, some current Nim packages might not measure up to the libraries of other
languages, which have benefited from years of optimization by hundreds or thousands of full-time
developers.

Indeed, the future of Nim is not entirely secure. Core developers might vanish, financial support
could stop, or a better language could emerge. However, even if the development of Nim were to
cease someday, you would still be able to use it, and many of the concepts you’ve learned with Nim
could be applied to other modern languages as well.

Is Nim a good choice as the first language for a
beginner?
When you use C as your first language, you may learn a lot about how computers really work, but
the learning experience may not be as enjoyable, progress can be slow, and C lacks many concepts
of modern programming languages. C++, Rust, and Haskell are often too difficult for beginners. So,
currently, many beginners start with Python. While you can efficiently grasp high-level concepts
with Python and quickly achieve useful results, you might not learn much about the internal work
ings of computers. Thus, you might not understand why your code is slow and consumes so many
resources; you could also be uncertain about how to improve the program or run it successfully on
restricted hardware. It’s like learning to drive a car without any knowledge about how a combus
tion engine, the transmission, or the brakes really work. Nim has none of these restrictions; it offers
high-level concepts like Python, but also provides access to low-level operations, enabling a deeper
understanding of internal workings if desired. Although learning resources for Nim are not yet as
developed as those for mainstream languages, some good tutorials are already available. Hopefully,
this book will also prove helpful to beginners.

35

Is Nim really a good teaching language?
Generally yes, in the same way as Pascal was in the 1980s, and Modula/Oberon was at the end of the
last century. However, Nim still faces the same issues as Wirthian languages: it doesn’t necessarily
assist in job seeking. If we teach children Python, JavaScript or C, they might find entry-level
employment, particularly if they have to deviate from their intended educational path for some
reason. Unfortunately, this is not the case with niche languages, so teachers should be aware of
their responsibility. Furthermore, it doesn’t make much sense to teach against the interests of the
kids. When they are keen to learn JavaScript to create visual effects or similar tasks easily, teaching
another language that might not be immediately available on their home PC or smartphone
becomes challenging.

So, is Nim really the best starting point for me?
Maybe not. If you intend to learn a programming language today and want to make a great video
game tomorrow, then Nim is definitely not the best starting point. This is just not possible. While
there are nice libs for making games with Nim already available, there exist easier solutions in
other languages. With some luck, you might find source code in that language allowing you to patch
a few strings, modify colors and background music, and claim it as your game.

After learning Nim, will I still have to learn other
programming languages?
Nim is quite a versatile language, making it a good candidate for someone intending to learn only
one language. But of course, it is always a good idea to learn a few other languages later. Generally,
it’s hard to avoid learning C, given the prevalence of C code worldwide. Most algorithms that have
ever been invented are available in a C implementation somewhere, and most libraries are written
in C or at least have a C API that you can use with other languages, including Nim. Since C is a com
pact language without complex constructs, a basic understanding of C is typically sufficient to con
vert a C program to another language. Often, that conversion process is supported by tools, such as
the Nim c2nim tool. So learning some C later is really a good idea, and when you have some basic
understanding of Nim and CS in general, learning some C is an easy task. However, learning C
before Nim could be an option, as more learning resources exist for C. A few years ago, some people
would have recommended learning C or Python before Nim. However, Nim now has sufficient
learning resources, so we indeed recommend starting directly with Nim.

Why should I not use Nim?
Perhaps it is simply not the ideal solution for you. Both a racing bicycle and a mountain bike are
excellent, but for cycling a few hundred meters to the baker’s shop, neither might be the perfect
solution. A standard bicycle would be more suitable. Even though Nim seems to combine the
advantages of both a racing bicycle and a mountain bike — high performance and robust
design — and isn’t expensive, it might not be the optimal solution for everyone. People who write
only small scripts and aren’t concerned about performance can continue using Python. People who
are interested solely in specific applications, perhaps just web development or 8-bit microcon
trollers, might not necessarily need Nim. Nim can do this and much more well, but for special use

36

cases, better-suited languages may still exist. Additionally, someone who has spent many years mas
tering C++ might decide to continue using it. Currently, another potential reason for not using Nim
could be the absence of certain libraries. If you require certain important libraries for your project
that are currently unavailable for Nim, of course, this could pose a significant problem if you lack
the skills or time to write them from scratch or at least create high-level bindings to a C library.

How long does it take to learn Nim?
Some people might tell you that you can learn it in just two weeks.[8] Perhaps, when you are very,
very bright. However, if it were that easy, the world would be filled with Nim experts. Studying the
official tutorials Part I and II should really take only a few hours, and then you have already a basic
feeling for the language and can do some simple exercises. In theory, to learn the fundamentals of
Nim, reading this book should suffice, and you might even skip Part I and the exercises in Part IV.
Thus, you actually only need to read 400 pages, which should be possible in 100 hours. But who can
really read 8 hours a day, and remember all the details without practicing? Reading the language
manual or Mr. Rumpf’s book would also be ways to learn the language.

I started with Nim in 2014, with some prior experience in Pascal, C, Modula, Oberon, Ruby, and
assembly language. I learned from all the tutorials, the Nim forum, IRC, and later from the Manning
book. I also studied the Nim language manual, the API docs of Nim’s standard library, and a few
important external packages. I estimate it took me one year, studying 10 hours a week, to under
stand the basics and become proficient in the language. In addition to learning, I did some exer
cises, such as writing a simple chess game. So for me, it actually took more than 500 hours. We
believe that with a good book, the learning process could be at least 50% faster. So, if you can dedi
cate 10 hours a week to learning and a few additional hours to practicing, you could consider your
self a Nim programmer after about six months. Of course, your motivation makes a big difference.
Loving the language, having an interesting project for which you intend to use the language, and
maybe even a job where you can use it, helps a lot.

[1] https://github.com/StefanSalewski/salewski-chess

[2] This syntax is well-known in the D programming language, where it was called Uniform Function Call Syntax (UFCS).

[3] https://en.wikipedia.org/wiki/Off-side_rule

[4] https://en.wikipedia.org/wiki/Off-side_rule#Productivity

[5] Of course, this is not really an issue in real life, as most editors and IDEs can give hints about symbols and support tooling like
"goto definition".

[6] See https://github.com/elbywan/crystalline, "Due to Crystal having a wide type inference system (which is incredibly convenient
and practical), compilation times can, unfortunately, be relatively long for big projects and depending on the hardware. This
means that the LSP will be stuck waiting for the compiler to finish before being able to provide a response." Also, see https://dev.to/
asterite/incremental-compilation-for-crystal-part-1-414k

[7] Actually, source code debuggers are not as useful as one may think: They can be used as a toy tool for people who prefer a form
of coding without thinking first, just to see what the program actually does. And they can be used to find obvious bugs, which can
be found easily with some print statements temporarily included in the source code as well. But for really hard bugs — random
crashes, or misbehavior of really complicated, deeply recursive, or threaded code, debuggers are often not that helpful and cannot
replace carefully thinking about the problem to solve and the applied algorithm.

[8] Not Nim, but VLang: https://vlang.io/: "You can learn the entire language by going through the documentation over a weekend."

37

https://github.com/StefanSalewski/salewski-chess
https://en.wikipedia.org/wiki/Off-side_rule
https://en.wikipedia.org/wiki/Off-side_rule#Productivity
https://github.com/elbywan/crystalline
https://dev.to/asterite/incremental-compilation-for-crystal-part-1-414k
https://dev.to/asterite/incremental-compilation-for-crystal-part-1-414k
https://vlang.io/

Our first Nim program
To maintain our motivation, let’s now present our first tiny Nim program. Ideally, we would delay
this section until after installing the Nim compiler on our computer. However, we can already run
and test the program by copying it into one of the available Nim online playgrounds like

• https://play.nim-lang.org/

There are two more unofficial sites that can run Nim code online:

• https://replit.com/languages/nim

• https://wandbox.org/

In the section What is an algorithm? we described an algorithm to sum up the first 100 natural
numbers. Converting that algorithm into a Nim program is straightforward, resulting in the text file
provided below. You can copy it into the playground and run it now if you want. The program uses
some basic Nim instructions, which we will briefly describe here. Everything will be explained in
much more detail in the next part of this book.

var sum: int
var i: int
sum = 0
i = 0
while i < 100:
 inc(i, 1)
 inc(sum, i)
echo sum

We write Nim programs as plain text files using an editor tool, and you will learn how to create
them soon. We call these text files the source code of the program. The source code is the input for
the compiler. The compiler processes the source code, checks for obvious errors, and then gener
ates an executable file that contains the final CPU instructions and can be run. Executable files are
sometimes called executables or binary files. The term binary could be considered misleading, as all
computer files are indeed stored as binary data. However, the expression 'binary' is used to differ
entiate executable programs from text files, such as Nim source code, which we can read, print, and
edit using an editor. Don’t try to load the executable files generated by the Nim compiler into a text
editor, as the content is not plain text, but numeric machine code that may confuse the editor. On
the Windows OS, executable files typically get a special name extension .exe, but on Linux, no spe
cial name extensions are used.

Nim source code files are processed by the Nim compiler from top to bottom. In principle, for the
generated executable, program execution also starts at the top. However, there are some exceptions
to program execution; for example, program code enclosed in functions is not immediately exe
cuted where it appears in the source code file but rather when the function is called (invoked). And
the program execution is not a linear process — we can use conditional expressions to skip parts of
the program, or various loop constructs to repeat the execution of some program segments. In fact,
the program execution in Nim is more similar to languages like Python or Ruby than to the C lan

38

https://play.nim-lang.org/
https://replit.com/languages/nim
https://wandbox.org/

guage: A C program always needs a main() function with exactly this name, and the execution of a C
program always starts with a compiler-generated call to this function.

Variables are elementary entities of computer programs and are essentially named storage areas in
the computer. As Nim is a compiled and statically-typed language, we have to declare each variable
before we can use it. We do that by choosing a meaningful name for the variable and specifying its
data type. To tell the compiler about our intention to declare a variable, we start the line with the
var keyword, followed by the chosen name, a colon, and the data type of our variable. We have to
put at least one space character between the var keyword and the name of the variable, to allow
the compiler to recognize the two separate entities. Usually, we also put a space after the colon that
separates the variable name from its data type. But this is only a convention to improve the read
ability of the source code. For the compiler, the colon already separates the variable name from the
data type. The first line of our program declares a new variable named sum of data type int. int is
short for integer and indicates that our variable should be able to store negative or positive integer
numbers. (Integer numbers are whole numbers without a fraction, like -1, 0, 1234. Floating-point
numbers, like 3.14159, represent another important numeric data type that we will use later as
well.) The var at the start of the line is a keyword. Keywords are reserved symbols that have a spe
cial meaning for the compiler. Var indicates that we want to introduce a new variable. The com
piler recognizes this and reserves a memory location in the computer’s RAM to store the actual
value of the variable.

The second line is nearly identical to the first: we declare another variable, again of int type and a
simple name, i.

Variable names like i, j, and k are typically used when we cannot think of a meaningful name or
when we intend to use these variable as (array) indizes or as counters in loops. Note that in Nim, we
can use arbitrary names for variables (with some restrictions) and that the actual name of a vari
able is not coupled to its data type or behavior. In early Fortran, that was handled differently, as the
convention was that variables named i, j, and k were automatically of integer type by default.

In lines 3 and 4 of our program, we initialize the variables, that is, we give them a well-defined ini
tial start value. To do that, we use the = operator to assign a value to the variable. Operators are spe
cial symbols like +, -, *, or / to indicate our desire to do an addition, a subtraction, a multiplication,
or a division. Note that the = operator is used in Nim like in many other programming languages for
assignment, and not like in traditional mathematics as an equality test. The reason for this is that,
in computer programming, assignments occur more frequently than equality tests. Some early lan
guages, like Pascal, used the compound := operator for assignment, which aligns more closely with
mathematical usage. However, it is more difficult to type on a keyboard and is not visually appeal
ing to most people. An expression like x = y assigns the content of variable y to x. In other words, x
gets the value of y, the former value of x is overwritten and lost, and the content of y remains
unchanged.

After such an assignment, x and y contain the same value. In the above example, we do not assign
the content of a variable to the destination; instead, we use a literal numeric constant with the
value 0. When the computer has executed lines 3 and 4, the variables sum and i each contain the
start value 0. When we use the = operator for an assignment, we usually put a space character on
both sides of the operator. However, this is merely a convention to improve the readability of the
source code and is not strictly necessary. As a convention, spaces are typically placed on both sides
of most Nim infix operators. This includes arithmetic operators, the assignment operator, and rela

39

tional operators such as < or >. Also, similar to usage in ordinary text files, when we use a colon or a
semicolon to separate two entities from each other, we usually put a space after the punctuation
character.

Line 5 of our code example is much more interesting: it contains a while condition. The line starts
with the term while, which is again a reserved keyword, followed by the logical expression i < 100
and a colon. An expression in Nim is something that produces a result, like the math expression 2 +
2, which yields the integer result of 4. A logical expression doesn’t yield a numerical result; instead,
it yields a logical (boolean) result, which can be true or false. The logical expression i < 100 is
dependent on the current value of the variable i. The two lines following the line with the while
keyword are each indented by two spaces, meaning that these lines start with two additional spaces
compared to the previous line. This form of indentation is used in Nim (and Python) to indicate
blocks. Blocks are grouped statements. The complete while loop consists of the line containing the
while keyword followed by a block of statements. The statement block after the while condition is
executed as long as the while condition evaluates to the logical value true. For the first loop itera
tion i has the initial value 0, the condition i < 100 evaluates to the boolean value true, and the
block after the while condition is executed for the first time. In this block, we have the inc() instruc
tion. Inc is an abbreviation for increment. Inc(a, b) increases the value of variable a by b, while b
remains unchanged. So in the above block, i is increased by one, followed by sum being increased by
the current value of i. So when that block has been executed for the first time, i has the value 1 and
sum also has the value 1. At the end of that block, execution starts again at the line with the while
condition, now testing the expression i < 100 with i containing the value 1. Again, it evaluates to
true, so the block is executed again; i then gets the new value 2, and sum becomes 3. This process
continues until i reaches the value 100, at which point the condition i < 100 evaluates to false, and
execution proceeds with the first instruction after the while block. That instruction is an echo state
ment, which is used in Nim to write values to the terminal or screen of the computer. Some other
languages use terms like print or put instead of echo. You might still be wondering about the colon
that terminates line five, which contains the while condition. That colon serves solely as a marker
to indicate the end of a conditional statement.

Don’t worry if you haven’t understood much of this short explanation; we will explain all of it in
much more detail later.

If you decide to try the above program, perhaps on a playground Internet page or on your
local computer, it is best to copy the source code verbatim instead of typing it from scratch, as
tiny typos can cause a lot of trouble for beginners. If you decide to type it with your keyboard,
you should try to replicate it exactly as displayed above. All the program code should start
directly at the first column. However, the two lines after the while keyword should start with
two spaces. This strict indentation is used in Nim and some other programming languages,
such as Python and Haskell, to structure the program code and mark the extent of code
blocks. Some other programming languages like C do a similar alignment of the source code
for readability, but that alignment is ignored by the C compiler — instead, blocks have to be
enclosed in curly braces {}. Note that you have to do the indentation really with spaces, as
Nim does not accept tabulator characters in its source files. Also, be aware that the Nim com
piler distinguishes between words starting with lowercase and uppercase letters. Nim key
words are written always in lowercase, and when we define a variable as sum then we should
always refer to it in exactly this notation.[1] Also note that spaces in the Nim source code are
important and can change the semantics: While spaces in C are mostly only used to separate

40

distinct symbols, in Nim spaces have some more functionality. For instance, in mathematical
expressions, a - b or a-b is both a valid subtraction in the case when a and b both have a
numeric type for which an infix subtraction operator is defined, but the code segment a -b
may give us an error message from the compiler. The reason is that in this case, the - sign is
directly attached to b but separated from a by at least one space. In this case, the Nim com
piler interprets the - sign as a unary operator attached to b. Even in the case that such a
unary - may have been defined before, then the operands a and b would be not separated by
an infix operator, which is an invalid syntax in Nim. An expression like a - -b would instead
be valid syntax — with the unary minus attached to b, and a and (-b) separated by an infix -
operator. In this example, we’ve already learned that the same symbol can have a different
meaning in the Nim language, depending on the context. For operators or functions, this con
cept is called overloading, which most modern programming languages use. This sensitivity
to the asymmetrical use of spaces also applies to the 'less than' operator used in the above
example: a < b or a<b is the infix notation that we generally intend for a comparison opera
tion, while a <b would be mostly invalid code. For infix operators, we typically put a space on
each side to improve readability, although it’s not strictly necessary, and some people opt not
to insert these spaces. Unary operators, like the unary - sign, should always precede a vari
able or a literal without a space.

All this might sound a bit complicated, and the compiler error messages about these format
ting rules may not always be entirely clear for beginners. Ultimately, it’s akin to handwriting -
after the initial learning phase, correct usage will become second nature.

Note that you can easily verify the result of our tiny program: Instead of summing up the first
100 natural numbers, we could simply sum up 50 pairs, each constructed from the first and
the last numbers, the second and the second-to-last numbers, and so on. The sum of each pair
is always 101, so the sum of fifty pairs is 50 * 101 = 5050. This trick is attributed to the famous
German mathematician Johann Carl Friedrich Gauss (1777 – 1855), who is said to have used
this method as a young schoolboy to quickly solve a similar task given by a teacher.[2]

[1] Actually, Nim relaxes this strict notation a bit in a process called 'style insensitivity', which is explained in more detail later in
the book.

[2] https://en.wikipedia.org/wiki/Carl_Friedrich_Gauss#Anecdotes

41

https://en.wikipedia.org/wiki/Carl_Friedrich_Gauss#Anecdotes

Binary numbers
When we write numbers in everyday life, we typically use the decimal system with base 10, which
includes the ten available digits 0 through 9. To get the value of a decimal number, we multiply
each digit with powers of 10 depending on the position of the digit and sum the individual terms.
The rightmost digit is multiplied by 10^0, the next digit by 10^1, and so on. A literal decimal number
like 7382, therefore, has the numerical value 2 * 10^0 + 8 * 10^1 + 3 * 10^2 + 7 * 10^3. Here, we
have used the exponential operator ^ — where 10^3 = 10 * 10 * 10. Current computers use binary
representation internally for numbers. Generally, we do not care much about that fact, but it is
good to know some properties of binary numbers. Binary numbers work nearly identically as deci
mal numbers. The difference is that we have only two available digits, which we write as 0 and 1. A
number in binary representation is a sequence of these two digits. Like in the decimal system, the
numerical value results from the individual digits and their position: The binary number 1011 has
the numerical value 1 * 2^0 + 1 * 2^1 + 0 * 2^2 + 1 * 2^3, which is 11 in decimal notation. For
binary numbers, the base is 2, so we multiply the binary digits by powers of two. Formally, the addi
tion of two binary numbers works as we know it from the decimal system: we add the matching
digits and take the carry into account, as in 1001 + 1101 = 10110, because we start by adding the two
least significant digits of each number, which are both 1. That addition of 1+1 results in a carry and
the resultant 0. The next two digits are both zero, but we have to take the carry from the former
operation into account, so the result is 1. For the next position, we have to add 0 and 1, which is just
1 without a carry. And finally, we have 1 + 1, which results in 0 with a carry. The carry generates an
additional digit, concluding the operation. In the decimal system with base 10, a multiplication with
10 is easily calculated by just shifting all digits by one place to the left and writing a 0 at the now
empty rightmost position. For binary numbers, it is very similar: a multiplication by the base,
which is two in the binary system, is simply a shift to the left, with the rightmost position filled by
digit 0. [1]

In the binary system, the digits are typically called bits, and these bits are numbered from right to
left, starting with 0 for the rightmost bit. For example, the binary number 10010101 is referred to as
an 8-bit number because it requires eight digits to be represented in binary form. Often, individual
bits are conceptualized as small bulbs, with a 1 bit represented as a lit bulb and a 0 bit represented
as a dark bulb. A lit bulb is also referred to as a set bit. For instance, in the binary number 10010101,
bits 0, 2, 4, and 7 are set, and the other bits are unset or cleared.

Groups of eight bits are called a byte, and sometimes, four bits are called a nibble. A word, which is
an entity a computer can process in a single instruction, may consist of one, two, four, or eight
bytes, depending on the CPU’s capacity. In the case of a CPU with an 8-byte word size, this means
that the computer can, for instance, add two variables, each of 8-byte size, in a single instruction.

Let’s investigate some basic properties of binary numbers, starting with the assumption that we
have an 8-bit word, also known as a byte. An 8-bit word can have 2^8 different states, as each bit
can be set or unset independently of the other bits. That corresponds to the numbers 0 up to 255.
For now, we’ll assume that we’re working with positive numbers only, but we will discuss negative
numbers soon. An important property of binary numbers in computers is the wrapping around,
which is a consequence of the fact that we have only a limited set of bits available to store the num
ber. Therefore, when we continuously add 1 to a number, all bits eventually become set. This corre
sponds to the largest number that can be stored with that number of bits. When we then add again
1, we get an overflow. The run-time system may catch that overflow, so we might receive an over

42

flow error, or the number is just reset to zero, as it may happen in our car when we manage to
drive one million miles, or when the ordinary clock jumps from 23:59 to 00:00 of the next day. A
useful property of binary numbers is the fact that we can easily invert all bits, that is, replace set
bits with unset ones and vice versa. Let us use the prefix ! to indicate the operation of bit inversion,
then !01001100 is 10110011. It is an obvious and useful fact that for each number x, we get a number
with all bits set when we add x and !x. This means x + !x = 11111111 when considering an 8-bit
word. Furthermore, if we ignore overflow, it follows that x + !x + 1 = 0 for each number x. This is
a useful property that can be applied when considering negative numbers.

Now, let us investigate how we can encode negative numbers in binary form. In binary representa
tion, only two states are available: 0 or 1, representing a set or an unset bit, respectively. But we
have no unitary minus sign. The sign of a number could be encoded in the most significant bit of a
word — if this bit is set, it indicates that the number is negative. Generally, a modified version of
this encoding is used, called two’s complement: a negative number is constructed by first inverting
all the bits — a 0 bit is transferred into a 1 bit and vice versa — and finally the number 1 is added.
That encoding simplifies the CPU construction, as subtraction can be replaced by addition in this
way:

Consider the case that we want to do a subtraction of two binary encoded numbers. The operation
can be symbolically represented as A - B for arbitrary numbers A and B. Subtraction is, by defini
tion, the inverse operation of addition. In other words, A + B - B = A, or B - B = 0 for every num
ber B.

Assume we have a CPU that can do additions and that can invert all the bits of a number. Can we
perform a subtraction with that CPU? Indeed, we can.

Remember that for each number X, X + !X + 1 = 0, provided we ignore overflow. If that relation is
true for each number, then it is obviously true for each B in the expression A - B, and we can write
A - B = A + (B + !B + 1) - B = A + (!B + 1), using the associative property of addition and sub
traction in mathematics, that is we can group the terms as we want. But the term in the parenthesis
is just the two’s complement, which we get when we invert all bits of B and add 1. So, to perform
subtraction, we need to invert the bits of B and then add A, !B, and 1, ignoring overflow. That may
sound complicated, but a bit inversion is a very cheap operation in a CPU, which is always avail
able, and adding 1 is also a straightforward operation. The advantage is that we do not need sepa
rate hardware for the subtraction operation. Typically, subtraction in this way is not slower than
addition because the bit inversion and the addition of 1 can be performed at the same time in the
CPU as an ordinary addition.

From the equation above, indicating A - B = A + (!B + 1), it is obvious that we consider the two’s
complement (!B + 1) as the negative of B. Note that the two’s complement of zero is again zero, and
two’s complement of 00000001 is 11111111. All negative numbers in this system have a bit set to 1 at
the leftmost position. This restricts all positive numbers to bit combinations where the leftmost bit
is unset. For an 8-bit word, this means that positive numbers are restricted to the bits 00000000 to
01111111, which is the range 0 to 127 in decimal notation. The two’s complement of decimal 127 is
10000001. Seems to be fine so far, but note that there exists also the bit pattern 10000000, which is
-128 in decimal. For that bit pattern, no positive value exists. If we try to construct the two’s comple
ment of that bit pattern, we end up with the same pattern again. This is an asymmetry of two’s com
plement representation, which cannot be avoided. It generally is no problem, with one exception.
We can never invert the sign of the smallest available integer, as that operation would result in a

43

run-time error.[2]

Summary: When working only with positive numbers, we can store numbers from 0 up to 255 in an
8-bit word, also known as a byte. In a 16-bit word, we could store values from 0 up to 2^16 - 1,
which is 65535. When we need numbers that can also be negative, we have for 8-bit words the
range from -128 to 127 available, which is -2^7 up to 2^7 - 1. For a signed 16-bit word, the range
would be -2^15 up to 2^15 - 1.

While we can work with 8 or 16-bit words, for PC programming the CPU usually supports 32- or 64-
bit words, so we have a much larger number range available. But when we program microcon
trollers or embedded devices we may indeed have only 8- or 16-bit words available, or we may use
such small word sizes intentionally on a PC to fit all of our data into a smaller memory area.

An important note to conclude this section is that whenever we have a word with a specific bit pat
tern stored in our computer’s memory, we cannot directly determine the type of data from the bit
pattern. It can be a positive or a negative number, but maybe it is not a number at all but a letter or
maybe something totally different. As an example, consider this 8-bit word: 10000001. It could be
129 if we have stored intentionally positive numbers in that storage location, or could be -127 if we
intentionally stored a negative value. Or it could be not a number at all. Is that a problem? No, it is
not as long as we use a programming language like Nim which uses static typing. Whenever we are
using variables, we declare their type first, and so the compiler can do bookkeeping about the type
of each variable stored in the computer memory. The benefit is that we can use all the available bits
to encode our actual data, without having to reserve any bits to encode the actual data type of vari
ables. For languages without static typing, this is not the case. In languages like Python or Ruby, we
can use variables without a static type, so we can assign whatever we want to them. That seems to
be comfortable at first but can be confusing when we write larger programs and the Python or
Ruby interpreter has to do all the bookkeeping at runtime, which can slow down the program and
consume additional memory.

Put another way, to determine if an operation is valid, it’s generally sufficient to know only the data
type of the operands. We do not have to know the actual content. The only exception is if we invert
the sign of the most negative integer number or if we perform an operation that causes an over
flow, as there are not enough bits available to store the result — we may get a run-time error for
that case.[3] In a statically-typed language, each variable has a well-defined type, and the compiler
can ensure at compile-time that all operations on that variable are valid. If an operation is not
valid, the compiler will generate an error message. Then, when these operations are executed at
run time, they are always valid operations, and the actual content, like the actual numeric value,
does not matter (with the exception of overflow and perhaps a few other invalid math operations
like division by zero).

[1] If you still wonder why this works that way in the decimal and binary system: Remember how we determine the value of a lit
eral number. We sum the digits multiplied by the powers of the base. And if we multiply an arbitrary number with the base, each
of these powers increases obviously by one. Write it on a piece of paper when it is not yet clear to you.

[2] If you have a piece of paper and a pencil at hand, you may test some properties of signed binary numbers represented in two’s
complement: take binary 0, apply the two’s complement operation to get the negative of it. Note, we ignore overflow here when we
add the 1! That was easy. Can we verify that all negative numbers in two’s complement can really be identified by its set topmost
bit? Maybe that fact is not really obvious, as we not only invert all bits of the positive number but also add 1. OK, let us consider
the non-negative numbers 0 .. 127 for an 8-bit word. All those bit patterns have the topmost bit cleared and all bit combinations are
used in the other 7 bits. Inverting these patterns gives us a pattern with the leftmost bit set, and again all bit combinations used in
the other 7 bits. Fine, so far, the topmost bit is set, but we still have to add 1 to complete our two’s complement operation. But the
only case where adding 1 changes the topmost bit is when the 7 other bits are all set, and that is only the case when the initial

44

value before bit inversion was zero. So the leftmost bit remains set for all numbers except the initial zero, and zero maps to zero
again!

[3] In the current Nim implementation, signed overflow generates an overflow exception, while unsigned types simply wrap
around. For C it is similar — for C99 it is defined that unsigned int types wrap around, while the behavior for signed ints is unde
fined and depends on the actual implementation of the C compiler.

45

Hexadecimal numbers
Hexadecimal numbers, based on the 16-base numerical system, might seem less prevalent com
pared to binary numbers and their technical rationale may not be immediately apparent. However,
these numbers continue to be relevant and you might come across them occasionally in various
contexts. Originally, hexadecimal numbers emerged from the infancy of computer science when
programming was primarily conducted through numerical codes rather than sophisticated pro
gramming languages. Despite their historical origin, hexadecimal numbers remain integral to mod
ern computing. They serve as a more human-friendly representation of binary numbers, facilitat
ing their comprehension and manipulation. This function has led to their extensive use in different
areas of computing, including programming and networking. So, even though hexadecimal num
bers are seen as a remnant from the nascent phase of computing, they retain their utility and rele
vance in contemporary computer science.[1] To represent the 16 possible values of a hexadecimal
digit, the 10 decimal digits 0 up to 9 are supplemented with the characters A through F. The most sig
nificant characteristic of a hexadecimal digit is that it can represent four bits — a unit equivalent to
half of a byte, sometimes called a nibble. In the past, when manually entering binary numbers was
necessary, it was often easier to encode a nibble using a hexadecimal digit:

Decimal Binary Hexadecimal

0 0000 00

1 0001 01

2 0010 02

3 0011 03

4 0100 04

5 0101 05

6 0110 06

7 0111 07

8 1000 08

9 1001 09

10 1010 0A

11 1011 0B

12 1100 0C

13 1101 0D

14 1110 0E

15 1111 0F

The only place where we will encounter hexadecimal characters again in this book will be when we
introduce character and string data types. There, control characters like a newline character are
sometimes specified in hexadecimal form, such as "\x0A" for a newline character.

[1] GPT-4 changed the content of this paragraph, as it considers hexadecimal numbers more important than we initially did.

46

Installation of the compiler
We will not go into great detail about installing the Nim compiler, as the process largely depends on
your operating system, and the installation instructions may change in the future. We assume that
you have a computer with an installed operating system and Internet access, and you are able to do
at least very basic operations with your computer, such as switching it on, logging in, and opening a
web browser or a terminal window. If that is not the case, then you should really seek help for
these basic steps, and possibly with other basic tasks.

Detailed installation instructions are available on the Nim homepage at https://nim-
lang.org/install.html.[1] Try to follow these instructions. If they are not sufficient, please seek help in
the Nim forum: https://forum.nim-lang.org/

If you are using a Linux operating system, then your system usually provides a package manager,
which should make the installation very easy.

For example, on a Gentoo Linux system, you would open a root terminal and simply type emerge -av
nim. That command would install Nim, including all necessary dependencies, for you. It may take a
few minutes as Gentoo compiles all packages fresh from the source code, but then you are done.
Similar commands exist for most other Linux distributions. This installation by a package manager
installs Nim system-wide, so all users of the computer can now use Nim.

Another solution, which is preferable when you want to ensure that you get the most recent Nim
compiler, is compiling directly from the latest git sources. This process is also straightforward and
is described here: https://github.com/nim-lang/Nim. However, before you can follow these instruc
tions, you must ensure that Git software and a working C compiler are installed on your computer.

[1] To visit and read that page, you have to enter this string in the address input field of your internet browser.

47

https://nim-lang.org/install.html
https://nim-lang.org/install.html
https://forum.nim-lang.org/
https://github.com/nim-lang/Nim

Creation of source-code files
Nim source code, like the source code of most other programming languages, is based on text files.
Text files are documents saved on your computer that contain only ordinary letters, which you can
type on your keyboard. This means no images or videos, no HTML content with fancy CSS styling.
Generally, source code should contain only ordinary ASCII text, that is, no umlauts or Unicode char
acters.

To create source code, we typically use a text editor, which is a tool designed for creating and modi
fying plain text files. If you don’t already have a text editor, you could technically use a word
processor to write your source code, though it’s not recommended. However, you would need to
ensure that the file is saved as plain ASCII text. Editors typically support syntax highlighting, mean
ing keywords, numbers, and such are displayed with a unique color or style, making it easier to rec
ognize the content. Some editors support advanced features like checking for errors while you type
the program source code.

A list of recommended editors is available at https://nim-lang.org/faq.html

If you do not want to use a specialized editor now, then Gedit or Nano should be available on Linux.
For Windows, you can use something like Notepad.

Typically, we store Nim source code files in their own directory, a separate section on your hard
drive. If you’re working on Linux in a terminal window, you can type

cd
mkdir mynimfiles
cd mynimfiles
gedit test.nim

You type these commands in the terminal window and press the return key after each of the above
lines — that is, you type cd on your keyboard and then press the return key to execute that com
mand. The same for the next three commands. What you have done is the following: you navigated
to your default working area (home directory), created a subarea named mynimfiles, entered that
subarea, and finally, launched the gedit editor. The argument test.nim tells gedit that you intend to
create or modify a file called test.nim. If gedit is not available, or if you work on a computer with
out a graphical user interface, then you may replace the gedit command with nano. While gedit
opens a new window with a graphical interface, nano opens only a very simple interface in the cur
rent terminal. Notable text editors without a GUI include Vim or NeoVim. These are very powerful
editors, but they are difficult to learn, and they might seem unconventional as they have both a
command mode and an ordinary text input mode available. For NeoVim, there is very good Nim
support available.

If you prefer not to work from a terminal, or if you are using Windows or macOS, you should have
a graphical user interface that allows you to create a directory and launch an editor.

Once the editor is open, you can type in the Nim source code from our previous example and save it
as test.nim. Afterward, you can close the editor.

48

https://nim-lang.org/faq.html

Note that the return key behaves differently in editors than in the terminal window: In the terminal
window, you type in a command and finally press the return key to "launch" or execute the com
mand. In an editor, the return key behaves similarly to the other keys: if you press ordinary keys in
your editor, the corresponding character is added to your text, and the cursor moves one position
to the right. And when you press the return key, then an invisible newline character is inserted, and
the cursor moves to the start of the next line.

49

Launching the compiler and running the
program
If you are working from a Linux terminal, then you can type

ls -lt
cat test.nim

That is, you first list the content of your directory with the ls command, and then display the con
tent of the Nim source code file that you have just typed in using the cat command.

Now type

nim c test.nim

This command invokes the Nim compiler and instructs it to compile your source code. The "c" letter
is called an option or a sub-command. It tells the Nim compiler to compile your program and to use
the C backend to generate an executable.

The compiler should display a success message almost immediately. If it displays error messages
instead, you should relaunch Gedit or Nano, correct your typing error, save the modified file, and
recompile.

When the source text is successfully compiled, you can run your program by typing

./test

In your terminal window, a number will be displayed, which is the sum of the numbers 1 to 100.

You may wonder why you have to type the prefix ./ in front of the name of your generated
executable program, as you can launch most other executables on your computer without
such a prefix. The prefix is generally needed to protect you and your computer from erro
neously launching a program in the current directory while you intended to launch a system
command. Imagine you downloaded a zip file from the internet, extract it, cd into the
extracted directory, and type ls to see the directory content. Now, imagine that the directory
contains an executable named ls, which is executed instead of the system ls. That foreign ls
command could potentially damage your system. So, to execute non-system commands, you
generally have to use the prefix ./, in which the period refers to the current directory. Of
course, you can install your own programs in a way that you don’t need such a prefix any
more. If you’re unsure how to do this, consider seeking help from someone experienced.

If you haven’t been able to open a terminal to invoke the compiler, you might want to consider
installing an advanced editor like VS-Code. These editors typically have the capability to launch the

50

compiler and run the program directly within the editor.

The command

nim c test.nim

is the most basic compiler invocation. The extension .nim is optional, the compiler can infer that file
extension. This command compiles our program in default debug mode; it uses the C compiler back
end and generates a native executable. Debug mode means that the generated executable includes
many checks, such as array index checks, range checks, nil dereference checks, among others. The
generated executable may not run very fast, and it will be large, but if your program has bugs, then
it will provide a meaningful error message in most cases. Only after you have carefully tested your
program, you may consider compiling it without debug mode. You may do that with

nim c -d:release test.nim

nim c -d:danger test.nim

The compiler option -d:release removes most checks and debugging code, and it enables the back
end optimization by passing the option "-O3" to the C compiler backend, resulting in a very fast and
small executable file. The option -d:danger includes -d:release and removes all checks. You should
be aware that compiling with -d:danger means that your program may crash without any useful
information, or even worse, it may run, but contain uncaught errors like overflows, which could
lead to incorrect results. Generally, you should compile your program with plain nim c first. After
you have tested it well, and if you need the additional performance, you may switch to the
-d:release option. For games, benchmarks, or other non-critical tasks, you may try the option
-d:danger, to get an executable without any checks for utmost performance.

There are many more compiler options. You can find explanations for them in the Nim language
manual, or you can display them using the commands nim --help and nim --fullhelp. An important
new option is --mm:arc, which enables the new deterministic memory management. You could com
bine --mm:arc with -d:useMalloc to disable Nim’s own memory allocator. This reduces the exe
cutable size and enables the use of Valgrind to detect memory leaks. Similar to --mm:arc is the
option --mm:orc, which can additionally deal with cyclic data structures. Another powerful option is
--passC:-flto. This option is for the C compiler backend and enables link time optimization (LTO).
LTO enables inlining for all procedure calls and can significantly reduce the final program size. In
recent versions of the Nim compiler, -d:lto can be used instead of --passC:-flto. Furthermore, for
Nim v2.0, --mm:orc is the default memory management strategy. It’s worth mentioning that you can
also try the C++ compiler backend using the cpp sub-command instead of the plain c command.
Additionally, you may compile with the CLang backend instead of the default GCC backend using
the --cc:clang option. You can additionally specify the option -r to immediately run the program
after a successful build. For testing small scripts, the compiler invocation in the form nim r
myfile.nim can be used to compile and run a program without generating a permanent executable
file. Here’s an example of how you can use all these options:

51

nim c -d:release --mm:arc -d:useMalloc --passC:-flto --passC:-march=native board.nim

In this example, -march=native is additionally passed to the C compiler backend to enable the use of
the most efficient CPU instructions of your computer. This could result in an executable that won’t
run on older hardware. Of course, you can save all these parameters in configuration files, elimi
nating the need to type them in for each compiler invocation. You may find more explanations for
all the compiler options in the Nim manual, or in later sections of this book; this includes the
options for the JavaScript backend.

52

Stropping for keywords and operators
Before concluding this introduction, we should mention that the Nim language supports stropping
for keywords and operators by enclosing them in backticks. This way, it is possible to use Nim key
words like type, from, or object as ordinary symbols, for example, as variable or field names. Typi
cally, we avoid using keywords as ordinary symbols. However, when interfacing with C libraries,
there may be instances where these libraries use symbols that are keywords in Nim. So, instead of
renaming the symbols, we could use a notation like `object` for a proc parameter name, or `from`
for a field name. Actually, we have to use stropping when we define procedures and functions that
serve as operators, as in the example proc `*`(c: char; i: int): string = c.repeat(i).

• https://en.wikipedia.org/wiki/Stropping_(syntax)

53

https://en.wikipedia.org/wiki/Stropping_(syntax

Part II: The Basics
In this section of the book, we will introduce some of the most essential constructs of the Nim pro
gramming language. These include statements, expressions, conditional and iterative code execu
tion, as well as functions, procedures, iterators, templates, and exceptions. We will also discuss vari
ous basic data types, including the container types: array, sequence, and string.

54

Declarations
In the Nim programming language, declarations serve a significant role by allowing us to define
constants, variables, procedures, and even our unique data types. Declarations serve to inform both
the compiler and the human reader about crucial attributes such as the name and data type of the
variable we intend to use. Being a statically and strongly typed language, Nim requires this infor
mation for the compiler to function correctly. These declarations are not only useful to the compiler
but also prove beneficial for us as programmers. They act as compact references, simplifying the
process of understanding and managing the code. This is particularly valuable when collaborating
with others, as it ensures clear communication and consistency in coding style, fostering a more
effective development environment.[1]

We will explain the type and procedure declarations in later sections. For now, we will focus on
constant and variable declarations.

A constant declaration in its simplest form maps a symbolic name to a value, like

const Pi = 3.14159

We use the reserved keyword const to inform the compiler that we want to declare a constant
named Pi and assign it the numeric decimal value 3.14159. Nim has a small set of reserved key
words such as var, const, proc, and while, among others, which tell the compiler that we want to
declare a variable, a constant, a procedure, or that we want to use a while loop for some repeated
code execution. Reserved keywords in Nim are specific symbols that hold special significance for
the compiler. Therefore, we should avoid using these symbols as names for other entities such as
variables, constants, or functions to prevent confusion for the compiler. The symbol = is the assign
ment operator in Nim; it assigns the value or expression on its right side to the symbol on its left.
You have to understand that this assignment operator is different from the equal sign we may use
in mathematics to express an equality relation. Some languages, like Pascal, initially used the com
pound operator := for assignments. However, this can be challenging to type and may confuse indi
viduals unfamiliar with it. Since source code typically contains many assignments, using the symbol
= is quite sensible. For the actual equality test of two entities, which is not used that often, we use
the compound == operator in Nim, as in most other programming languages including C and
Python. We call = an operator. Operators are symbols that execute basic operations, like + for addi
tion of two numbers, or = for assignment of a value to a symbol. Most operators are used as infix
operators between two arguments, as in the expression 2 * Pi, which denotes the multiplication of
the named constant Pi with the literal number 2, resulting in the floating-point value 6.28318. How
ever, operators can also function as unary operators, such as in -Pi where in unary minus inverts
the sign of a numeric value. When declaring named constants, we must always assign a value
immediately. That value can never change, but of course, we can use the named constant in expres
sions to derive different values, as in

const Pi = 3.14
const TwoPi = 2 * Pi
const MinusPi = -Pi

55

When declaring constants, you can also specify the exact data type of the constant value, as in

const Pi: float = 3.14
const Two: float = 2

Typically, specifying the type isn’t necessary, as Nim employs type inference. From the literal value
3.14, it is obvious that it is a decimal floating point number. For the second line, type inference
would conclude that the constant Two is of integer type, as no fractional part is given. In this case,
we can specify the desired data type after the name of the constant, separated by a colon. Alterna
tively, we could write const Two = 2.0. When dealing with numeric expressions with constants, the
Nim compiler performs intelligent automatic type promotion. For instance, when given the expres
sion const TwoPi = 2 * Pi, Nim assumes that what we actually intended was const TwoPi = 2.0 *
Pi.

For numeric expressions with variables, this type-promotion is stricter. It aims to avoid unneces
sary type conversions at runtime and to ensure that the final program truly utilizes the intended
data types.

As mentioned in Part I of the book, we usually place a space on either side of an operator when we
use it in infix notation between two operands. This convention improves the readability of the
source code. As mentioned before, in Nim, spaces can sometimes change the interpretation of an
expression. This is because Nim adheres to the conventions of handwritten notation. For instance, a
+ -b is significantly different from a+-b. We will discuss these notations in later sections of the book
in more detail.

With the aforementioned constant declaration, we can use the symbol Pi in our program’s source
code, eliminating the need to remember or retype the exact sequence of digits. Utilizing named con
stants, such as Pi from our previous example, simplifies value modification. If we need more preci
sion, we can update the exact value of Pi in one place in our source code, rather than searching for
the digit sequence 3.14 throughout our code files.

For numeric constants, such as our Pi value, the compiler will substitute the symbol with its actual
numeric value in the source code during compilation.

Expressions assigned to constants are already evaluated at compile time. Thus, complicated con
stant expressions do not negatively impact the program’s performance. The expressions can con
tain simple operations like basic math, and most Nim functions can be used as well, but functions
like sin() from external C libraries might currently be unavailable.

Variable declarations are more complex because they require the compiler to reserve a specific
named storage location:

var velocity: int

In this case, we place the reserved keyword var at the start of the line to indicate to the compiler
that we are declaring a variable. We then give the variable our chosen name, followed by a colon
and the data type. The int type is a predefined numeric data type indicating a signed integer. The

56

storage capacity of an integer variable depends on the operating system of your computer. On 32-
bit systems, 32 bits are used, and on 64-bit systems, 64 bits are used to store one single integer vari
able. This range is adequate even for large signed integers, with a range from -2^31 to 2^31 - 1 for
32-bit systems, and from -2^63 to 2^63 - 1 for 64-bit systems.

While we generally use lower-case names for variables, the names of constants can start with an
uppercase letter as well.

Variables declared using the var keyword act as simple containers, storing a value which can be
accessed or modified later. We can assign an initial value to the variable immediately when we
declare it, similar to how we do it for constants, or we can assign the value later. If no actual value
is assigned to the variable, it assumes a default value, which for numeric variables is zero:

var start: int
var stop: int
var delta: int = 3
stop = 10 * start + 1

In the first and second lines, we declare two variables, start and stop, both of which initially hold
the default integer value of zero. In the third line, we declare one more integer variable called
delta, to which we assign an initial value of 3. And finally, in the fourth line, we assign an integer
expression to the variable stop. Nim offers more variants for variable declarations, which we will
discuss shortly. These include utilizing type inference when immediately assigning an initial value,
using var sections to declare multiple variables without repeating the var keyword, listing multiple
names of the same data type in front of the colon separated by commas, or using the let keyword to
declare immutable variables.

Nim v2.0 introduces the strictDefs pragma, which can enforce variable initialization. This helps
avoid errors that might occur when variables default to zero but require a different initial value.
The strictDefs pragma, along with other new features of Nim 2.0, is described in detail in the book’s
Appendix.

In some Nim documentation, as well as in this book, the terms declaration and definition are
used interchangeably, although this isn’t entirely accurate. Specifically, a declaration is a
statement that announces the existence of something, whereas a definition provides a more
detailed description. In the C programming language, there is a distinction between a func
tion declaration, which only describes the function’s name and the number and types of its
parameters, and a function definition, which also specifies the names of the function parame
ters and the source code of the function body. In Nim, function declarations are not com
monly used because they are only necessary when two functions call each other. In such
cases, we declare the first function, enabling us to use it in the definition of the other function
before we finally also define the first function. For other entities, such as constants, variables,
data types, or modules, the distinction between declaration and definition is less meaningful.
Therefore, these terms are often used interchangeably.

[1] This section was provided by GPT-4.

57

Statements
Statements, or instructions, are a core component of Nim programs; they tell the computer what it
shall do. Often statements are procedure calls, like the call of the echo() or inc() procedure, which
we have already seen in Part I of the book. We will learn what procedures exactly are in later sec
tions. For now, we can consider procedures as entities that perform specific tasks when we call (or
invoke) them. We invoke them by writing their name in our source code file, followed by a list of
parameters, or arguments. When we write echo 7, echo() is the procedure that we call, and 7 is the
argument — an integer literal in this case. When the parameter list includes more than one argu
ment, we separate the arguments with a comma and typically add an optional space afterward. As a
result of our procedure call, the decimal number 7 is written to the terminal window when we exe
cute the compiled program. The parameter list can be empty, and the parameters can be expres
sions, that may again contain function calls like echo sin(0) + 2.0. In contrast to languages like C,
where the parameter list must always be enclosed in brackets, Nim often allows us to omit the
brackets — a feature known as the command invocation syntax.

const SquareOfFive = 5 * 5
echo(5 * 5, SquareOfFive) # ordinary procedure call
echo 5 * 5, SquareOfFive # command invocation syntax

The command invocation syntax is typically used with the echo() procedure, or when a procedure
has only a single argument. For multiple arguments, or when the argument is a complicated expres
sion, the use of brackets is preferable. In some programming languages, like C, coding styles may
suggest placing a space between the function name and the opening bracket. For Nim, we should
not do that, the reason will become clear when we later explain the tuple data type. A few proce
dures have no parameters at all. When we call these procedures, we always have to use the syntax
myProc() with an empty pair of brackets to make it clear to the compiler that we want to call that
procedure. The statement res = myProc() assigns the result of the procedure call to res, while res =
myProc assigns the procedure itself to res, which is a significantly different operation.

Functions are a special form of procedures that return a value or a result. For instance, in mathe
matics, sin() or cos() are functions — we pass an angle as an argument and they return the sine or
cosine of that angle, respectively. On the other hand, the echo() procedure, which prints the argu
ments, is not a function as it doesn’t return a result.

Let’s examine this minimal Nim program:

var a: int
a = 2 + 3
echo a
echo(cos(0) + 2)

The Nim program above consists of a variable declaration and three statements: in the first line, we
declare the variable we want to use. In the next line, we assign the value 2 + 3 to it, and finally, in
line 3 we use the procedure echo() to display the content of our variable in the terminal window. In
the last line, we once again use the echo() procedure with a conventional parameter list enclosed in

58

brackets. The parameter list contains a single argument, which is the sum of a function call to cos(0)
and the literal value 2. Here, the compiler would first call cos(0), then add the literal value 2 to that
result, and finally pass the sum to the echo procedure to print the value. [1]

Nim programs are generally processed from top to bottom by the compiler, and they also execute in
the same order after successful compilation. A consequence of this is that we have to write the lines
of the above program exactly in that order. If we moved the variable declaration down, then the
compiler would complain about an undeclared variable because the variable is used before it has
been declared. If we exchanged lines 2 and 3, then the compiler would be still satisfied, and we
would be able to compile and run the program. However, the output would be significantly differ
ent because the uninitialized value of the variable a would be displayed first and only then would it
be assigned a value.

When we have to declare multiple constants or variables, we can use a block. That is, we write the
keyword var or const on its own line, followed by the respective declarations as shown:

const
 Pi = 3.1415
 Year = 2020
var
 sum: int
 age: int

These blocks are also referred to as sections, for example, const section or var section, as is custom
ary in Wirthian languages. Take note of the indentation — the lines following const and var begin
with a few spaces, forming an indented block that allows the compiler to identify the end of the
declaration. Typically, we use two spaces for each level of indentation. While other numbers of
spaces can be used, it’s essential to maintain consistency in the indentation scheme. Two spaces are
generally recommended as they are easily recognizable in the source code and do not consume
excessive space; thus, they do not create overly lengthy lines that may not fit on the screen.

Also note that in Nim, we generally write each statement on its own line. The line break indicates to
the compiler that the statement has ended. Special statement delimiters as the ; in C are not require
at the line end, but can be used to separate multiple statements on the same line. There are a few
exceptions to this rule — for example, long mathematical expressions can continue on the next line.
Generally, when a line ends with a punctuation character, and the next line is indented, the com
piler recognizes the continuation. (for more details, refer to the Nim manual). Multiple statements
can also be put on a single line by separating them with a semicolon:

var a: int
echo a; inc(a) ①
a = 2 * a + ②
 a * a

① Here, two statements are separated by a semicolon on a single line.

② A longer math expression split over multiple lines. An operator as the last character on a line
indicates that the expression continues on the next indented line.

59

It is also possible to declare multiple variables of the same type in a single declaration, as shown
below:

var
 sum, age: int

Alternatively, we can assign an initial start value to a variable as shown in the example below:

var
 year: int = 1900

Nim also currently supports the initialization of multiple variables with the same value:

var
 i, j: int = 1

Here, both i and j would get the initial value 1. However, this notation is often avoided as it may
not be immediately clear to all readers.

Lastly, we can use type inference for variable declarations when an initial value is assigned, as
shown in the example below:

var
 year = 1900

The compiler recognizes in this case that we assign an integer literal to that variable, and so silently
gives the variable the int type for us. Type inference can be convenient, but it might make the
source code more difficult for readers to understand, or the type inference might not always yield
the expected results. For example, in the above code, year gets the data type int, which is a signed 4
or 8-byte number. However, we might prefer an unsigned number or a number that occupies only
two bytes in memory. For the final executable, it makes no difference whether a variable received
its runtime type through direct user specification or by the use of type inference, as long as the
actual data type is the same. Although the use of type inference may slightly increase the compile
time for our source code, this increase is typically negligible.

Note: For integral data, we mostly use the int data type in Nim, which is a signed type with a 4 or 8-
byte size. It usually does not make sense to use many different integral types — signed, unsigned,
and types of different byte sizes. Mixing them in numerical expressions can be confusing and
potentially even decrease performance, because the computer may have to do type conversion
before it can do the math operation. Another problem associated with unsigned types is that mathe
matical operations on unsigned operands could yield a negative result. Consider the following
example, where we use a hypothetical data type "unsigned int" to indicate unsigned integers:

var a, b: unsigned int
a = 3

60

b = 7
a = a - b

The true result should be -4, however, a is an unsigned type and cannot contain a negative value.
So, what should happen — an incorrect result or a program termination?

Another aspect related to variable declarations is the initial value of variables. Upon declaration,
Nim resets all the bits of our variables. This means that numerical variables automatically have an
initial value of zero unless we assign a different value in the variable declaration.

In this declaration

var
 a: int = 0
 b: int

both variables get the initial value of zero.

We have already mentioned that Nim 2.0 introduces the strictDefs pragma, which enforces explicit
initialization. That is explained in more detail in the Appendix where we summarize all the new 2.0
features.

There is a variant for variable declarations that uses the let keyword instead of the var keyword.
Let is used when we need a variable that gets assigned a value only once, while var is used when
we anticipate changing the content of the variable during the program execution. We say that we
use var to create mutable variables, and let to create immutable variables. Let seems to be similar
to const, but in const declarations, we can only use values that are known at compile time. Let per
mits us to assign values to variables that become available only at program runtime, possibly
because the value derives from a previous calculation. However, let also indicates that the assign
ment occurs only once, and the content does not change later during the program’s execution. We
refer to such a variable as immutable. The use of the let keyword can aid in understanding the
source code and potentially help the compiler optimize for faster or more compact code. For now,
we can just ignore let declarations and use var instead — later, we may use let where appropriate,
and the compiler will tell us when let will not work, and we have to use var.

The way we declare constants, variables, types, and procedures in Nim is very similar to what
was done in the Wirthian languages Pascal, Modula, and Oberon. Those familiar with lan
guages like C sometimes argue that C’s variable declaration form, int velocity;, is more con
cise and superior compared to Nim’s var velocity: int. Indeed, in this case, the declaration is
shorter. Some people prefer the data type written first, considering it more important than
the variable’s name. This comes down to personal preference, and it should be noted that the
C notation wouldn’t adequately distinguish between var, let, const, and type declarations.

With the knowledge we have gained in this section, we can rewrite our initial Nim example from
Part I as follows:

61

const
 Max = 100
var
 sum, i: int
while i < Max:
 inc(i)
 inc(sum, i)
echo sum

In the code above, we declare both int type variables in a single line and take advantage of the
compiler initializing them to 0. We also use a named constant for the upper loop boundary. Another
tiny fix is that we write inc(i) instead of inc(i, 1). We can do that because there exist multiple pro
cedures with the name inc() — one which takes two arguments, and one which takes only one argu
ment and always increases that argument by one. Procedures with the same name but different
parameter lists are referred to as overloaded procedures. Instead of inc(i), we could have written
also i = i + 1, and instead of inc(sum, i) we could write sum = sum + i. Either form would gener
ate identical code in the executable, so it’s a matter of personal preference.

[1] Actually, the code above would not compile, as the cos() function has to be imported from the math module. A first line like
"from std/math import cos" would fix that, but we leave that out by intent for now.

62

Input and output
We have already used the echo() procedure for displaying textual output in the terminal window. In
previous code examples, we passed integer type arguments to the echo() proc. This procedure auto
matically converted these integers into a textual sequence of decimal digits for display in the termi
nal window. In the Nim programming language, text is represented by a predefined, built-in data
type known as a string. We will delve into the details of the string data type in the next section. For
now, it’s sufficient to know that it exists and we can use the echo() proc to print text strings. The
echo() procedure is capable of automatically converting other data types, such as numbers or
Boolean values (true/false), into human-readable text strings for terminal output. Recall that most
data types are stored internally in our computer as bits and bytes, which have no true human-read
able representation by default. Numbers, like most other data types stored in the computer, are
essentially abstract entities. As we’ve learned, all data in a computer is stored internally in binary
form, which means it’s stored as a bit pattern of 0s and 1s. However, even that bit pattern is an
abstraction. We would require a procedure that prints a 0 for each unset bit and a 1 for each set bit
to display the content of an internally stored number in binary form in the terminal or elsewhere.
Similarly, we require a procedure to print an internally stored number as a human-readable
sequence of decimal digits. Even text strings are stored internally as abstract bit patterns and
require conversion procedures to be rendered as readable text. The echo() procedure is capable of
accomplishing all this, although we will not delve into these details at this point.

For our subsequent experiments, we may want to input some user data in the terminal. As we do
not know much about the various available data types and the procedures that can be used to read
them in, we will just present a procedure that can read a text string that the user types in the termi
nal window. We will utilize the readLine() function for this task.

echo "Please enter some text"
var mytext = readLine(stdin)
echo "You entered: ", mytext

Please note that the return key must be pressed after entering your text.

The first line of our program demonstrates how we can print a literal text string with the echo()
proc. To mark text literals unambiguously and to separate them from other literals like numeric lit
erals or from variables, the string literals have to be enclosed in quotation marks. In the second
line of our example program, we use the readLine() function to read textual user input. Note that
we call readLine() a function, not a procedure, to emphasize that it returns a value. The readLine()
function requires one parameter to specify the source of the input — for instance, the terminal win
dow or a file. The stdin parameter directs the function to read from the current terminal window.
Notably, stdin is a global variable of the sʏsᴛᴇᴍ (ɪo) module and represents the standard input
stream. Finally, in line 3 we use again the echo() proc to print some text. In this case, we pass two
arguments to echo(): a literal text enclosed in quotes, and the mytext variable, separated by a
comma. The mytext variable has the data type string. In this example, we employed type inference
to declare the data type. Since the readLine() function always returns a string, which is known to
the compiler, our mytext variable is automatically declared as a string. We will learn more about
the data type string and other useful predefined data types in the next section.

63

Nim supports the method call syntax, which was previously known as Uniform Function Call
Syntax in the D programming language. With this syntax, we can write procedure calls in the
form a.f instead of f(a). We will discuss this syntax in more detail when we explain proce
dures and functions. For now, it’s sufficient to be aware of this syntax, as we may utilize it in
some places in the subsequent sections. For example, for the length of text strings, we gener
ally write myTextString.len instead of len(myTextString). Both notations are entirely equiva
lent.[1]

When you try the example code from above, you might want a variant that reads the textual input
not on its own line but directly after the prompt, such as 'What is your name: Nimrod'. As the echo()
proc always writes a newline character after the last argument has been written, we have to use a
different function to get the input prompt on the same line. We can use the write() proc from the
sʏsᴛᴇᴍ module for this. As write() can not only write to the terminal but also to files, it needs an
additional parameter that specifies the destination. We can pass the variable stdout from the sʏsᴛᴇᴍ
module to indicate that write() should write to our terminal window. Often, beginners also desire
the ability to read single-character input without the additional need to press the return key. For
that, we can use the getch() function from the ᴛᴇʀᴍɪɴᴀʟ module — that function waits (blocks) until
a key is pressed and returns the ASCII character of the pressed key:

from std/terminal import getch

stdout.write("May you tell me your name: ")
var answer = readLine(stdin)
if answer != "no":
 echo "Nice to meet you, ", answer
echo "Press any key to continue"
let c = getch()
echo "OK, let us continue, you pressed key:", c

Don’t be misled by the fact that the first write() call and the subsequent readline() call do not
appear on the same line in our example. In this case, the actual format of our source code does not
influence the program output. We could write both function calls on a single line, separated by a
semicolon. But that would make no difference for the program output. The key difference between
the two function calls above is that write() prints the text without advancing the cursor to the next
line in the terminal window, while echo() does so once all arguments have been printed. We say
that echo() prints automatically a '\n' character, which we call a newline character, after all the
arguments have been printed.

[1] Here len() is a predefined function of the Nim standard library, len() is short for length, and that function returns the actual
length of a text string as an integer value.

64

Data types
Nim is a statically typed programming language, which means that all variables have a well-defined
data type, and this data type does not change during program execution. Moreover, we say that
Nim is a strongly typed language, meaning that it does nearly no automatic type conversions when
variables are assigned to each other or used in expressions or as arguments in function calls. Auto
matic type conversion may seem beneficial at first, but it can easily introduce errors or degrade the
performance of our programs.

The most fundamental data type — in real life and in computer science — is the integer (whole)
number. All other numeric data types, like fractional, floating-point, or complex numbers, and
other fundamental types like the boolean type with its two values true and false, and character and
text string types, can be represented as integers. For that reason, both the early computers built in
the 1950s and today’s smallest microcontrollers work internally only with integer numbers. The
integer data type is not only crucial for arithmetic operations, but it is also used as an index to
access elements in data structures such as arrays. Furthermore, integer numbers are often inter
preted as bit vectors to represent set-like data types. As all CPUs are able to do basic bit operations
like setting or clearing individual bits, and as bit patterns map well to mathematical sets, set data
types are well-supported by all CPUs, and so set operations are generally very efficient. Advanced
computers, built in the 1980s, received support for the crucial class of floating-point numbers
through specialized floating-point processors for fast numerical computations. Today, these float
ing-point units are typically integrated into the CPU, and GPUs can even process many floating-
point operations in parallel. However, the precision of GPUs is typically limited to the ranges
needed for games and graphic animations; that is, 32- or even 16-bit. Modern CPUs often also have
some form of support for vector data types to process multiple values in one instruction (SIMD, sin
gle instruction, multiple data).

Non-numeric types like characters or text strings are internally represented by integer numbers. In
the C language, the data type to represent text strings is called char, but it is indeed only an 8-bit
integer type that supports all the mathematical operations defined for ordinary integer types. In
Nim and the Wirthian languages, most math operations are not directly allowed for the char data
type, which helps prevent misuse and allows the compiler to catch logical errors.

Nim also supports several built-in homogeneous container types like arrays and sequences, along
with numerous built-in derived types like enumeration types, sub-ranges and slices, distinct types,
and view types (experimental). The built-in inhomogeneous container types object and tuple,
which allow grouping of other types, are complemented by a variant type container, which allows
instances of that type to contain different child types at runtime. These inhomogeneous container
types are similar to the struct and union types from the C programming language.

Other basic and advanced data types like complex and fractional numbers, types with arbitrary-
precision arithmetic, as well as hash sets and hash tables, dynamically linked lists, or tree struc
tures are available through the Nim standard library or external packages. Of course, we are also
able to define our own custom data types with our own operators, functions, and procedures work
ing on them.

Note that all the data types that are built into the language, like the primitive types int, float, or
char, as well as the built-in container types like tuple, object, seq, and string, are written in lower

65

case, while data types that are defined by the Nim standard library or that we define ourselves, by
convention, start with a capital letter like the CountTables type defined in the ᴛᴀʙʟᴇs module. Some
people may regard this as an inconsistency, while others may say that this distinction allows us to
differentiate built-in types from types defined by libraries.

At least, we can agree that using capital notation for common types such as Int, Float, or String
would be more difficult to type and wouldn’t look as nice.

Integer types
We’ve already mentioned the int data type, a signed integer that can be either 4 or 8 bytes depend
ing on the operating system. The reasoning behind Nim’s int size depending on the OS word size
will become clearer as we explore concepts of references and pointers. For now, let’s provide a
brief explanation for readers already familiar with pointers and their role in memory addressing.
If you’re unfamiliar with pointers, feel free to skip this section. The reasoning behind Nim’s int size
dependency on the OS lies in memory addressing. A 32-bit OS can generally address 2^32 bytes
(which equals 4 GBytes), limiting pointers and references to 32 bits. Having more bits wouldn’t be
practical. Integers often serve as indices for arrays and sequences, interacting with computer mem
ory in ways similar to pointers and references. So, in a 32-bit OS with 32-bit pointers, 32-bit integers
are sufficient as array indices since an array cannot have more than 2^32 entries. In contrast, a 64-
bit OS, equipped with 64-bit pointers, might require 64-bit integers as indices for larger arrays and
sequences. However, exceptions exist. There could be scenarios where 32-bit integers are sufficient
on a 64-bit OS, or situations on a 32-bit OS requiring 64-bit integers, such as for extensive counting
tasks. These considerations led to some advocating for a configurable int type of either 32 or 64 bits.
Similarly, some proposed a user-defined float type of 32 or 64 bits. Yet, Nim’s int type is OS-deter
mined, and its float type is invariably 64 bits. This approach represents a pragmatic solution. For
other sizes, one can use the int32, int64, float32, and float64 data types, which offer user-defined
sizes.

Besides the int data type, Nim has some more data types for signed and unsigned integers: int8,
int16, int32, and int64 are signed types with well-defined bit and byte size, and uint8, uint16, uin
t32, and uint64 are the unsigned equivalents. The number at the end of the type name indicates the
bit size; we can calculate the byte size by dividing this value by 8. Additionally, we have the type
uint, which corresponds to int and has the same size, but stores unsigned numbers only. [1] Gener
ally, we should try to use the int type for all integral numbers, but sometimes it can make sense to
use the other types. For example, if you have to work with a large collection of numbers, know that
each number is not very big, and your RAM is not really that large, then you may decide, for exam
ple, to use int16 for all your numbers. Or when you know that your numbers will be huge and will
not fit in a 4-byte integer, then you may use the int64 type to ensure that the numbers fit in that
type even when your program is compiled and executed on a computer with a 32-bit OS.

For integer numbers, we have the predefined operators +, -, and * available for addition, subtrac
tion, and multiplication. Basically, these operations work as one might expect, but it’s important to
remember that overflows can occur. For signed integers, we get compile- or run-time errors in that
case, while unsigned integers just wrap around, see the example at the end of this section. For the
division of integers, we have the operators div, mod, and / available. The div operator does an inte
ger division ignoring the remainder, mod is short for modulus and gives us the remainder of the
division, and / finally is currently only predefined for the signed int type and gives us a fractional

66

result of data type float. That type is introduced in the next section.

It can be challenging to remember how div and mod behave when either the divisor or dividend is
negative, as this behavior may vary across different programming languages. You can find a
detailed and justified explanation for this specific behavior in the Nim manual and on Wikipedia.

Integer division for positive and negative operands

Result of i div j
 -4 -3 -2 -1 0 1 2 3 4
-4 1 1 2 4 -4 -2 -1 -1
-3 0 1 1 3 -3 -1 -1 0
-2 0 0 1 2 -2 -1 0 0
-1 0 0 0 1 -1 0 0 0
 0 0 0 0 0 0 0 0 0
 1 0 0 0 -1 1 0 0 0
 2 0 0 -1 -2 2 1 0 0
 3 0 -1 -1 -3 3 1 1 0
 4 -1 -1 -2 -4 4 2 1 1

Result of i mod j
 -4 -3 -2 -1 0 1 2 3 4
-4 0 -1 0 0 0 0 -1 0
-3 -3 0 -1 0 0 -1 0 -3
-2 -2 -2 0 0 0 0 -2 -2
-1 -1 -1 -1 0 0 -1 -1 -1
 0 0 0 0 0 0 0 0 0
 1 1 1 1 0 0 1 1 1
 2 2 2 0 0 0 0 2 2
 3 3 0 1 0 0 1 0 3
 4 0 1 0 0 0 0 1 0

When performance matters, we generally should try to use the "CPU native" number type, which
for Nim is the int type. Furthermore, we should try to avoid using math expressions with different
types, as the CPU may have to do type conversion in that case before the math operation can be
applied. Adding two int8 types on some CPUs can be slower than adding two ints, because the CPU
may have to size extend the operands before the math operation is performed. But this depends on
the actual CPU, and there are important exceptions: Multiplying two ints would result in an int128
result if the int size is 64 bits, which can be slow if the CPU does not support that operation well.
Another essential factor to consider for maximum performance is cache usage. If you are perform
ing operations on a large set of data, then you may get a significant performance gain when large
fractions of your data fit in the caches of your computer, as cache access is much faster than ordi
nary RAM access. So using smaller data types, i.e. int32 instead of Nim’s default int, which is int64
on a 64-bit OS, may increase performance in this special application.

When we use Nim on tiny microcontrollers, maybe even on 8-bit controllers like the popular AVR
devices, it is recommended to use only integers of well-defined size like int8.

When we write integer literal numbers, we generally use our common decimal notation, as in var i
= 100. To increase the readability of long number literals, we can use the underscore character as in

67

1_000; that underscore character is just ignored by the compiler. We can also write integer literals
in binary, octal, or hexadecimal notation. For that, we prefix the literal value with 0b, 0o, or 0x. The
leading zero is necessary, and the next letter indicates a binary, octal, or hexadecimal encoding. But
such integer literal notation is very rarely used.

What’s more important is the actual size of integer literals, especially when we use type inference.
Ordinary integer literals have the int type, but integer literals not fitting in 32 bits have int64 type.
We can also specify the type of integer literals by appending the literal with i8, i16, i32, or i64 for
signed types and with u, u8, u16, u32, or u64 for unsigned types. We can separate the actual number
from the suffix with a ' character, although this is not necessary for integer literals.

var
 a = 100 # int literal in decimal notation
 b = 1234567890000 # int64
 c = 5'i8 # 8-bit integer
 d = 7u16 # unsigned integer with 2 byte size
 e = 0b1111 # ordinary integer in binary notation, value is 15 in decimal notation
 f = 0o77 # integer in octal notation, value is 7 * 8^0 + 7 * 8^1 in decimal notation
 g = 0xFF # integer in hexadecimal notation

echo g, typeof(g)

In arithmetic expressions, integer types of different sizes are generally compatible when all the
types are either signed or unsigned. For example, in the code provided above, we could write echo a
+ b + c, and typeof(a + b + c) would be int64. This means that the expression is propagated to the
largest type of all the involved operands. However, echo a + b + c + d would not compile because
it’s not clear whether signed or unsigned arithmetic should be used when there’s a mix of signed
and unsigned operands. It’s also worth noting that echo typeof(a) is typeof(b) would print false,
even on a 64-bit OS.

An important property of the Nim implementation, by A. Rumpf, when used with the C backend, is
that unsigned integers do not generate overflow errors but simply wrap around:

var x: int8 = 0

while true:
 inc(x)
 echo x

The code above would print the numbers 0 through 127, then terminate program execution due to
an overflow error. But when we change the data type to uint8, we would get a continuous sequence
of the numbers 0 up to 255. After the value 255 is reached, the value wraps around to 0 again and
the process continues. This behavior can lead to strange bugs and is one of the reasons why the Nim
team generally recommends avoiding unsigned integers.

For compatibility with external libraries, Nim has also the integer types cint and cuint, which
exactly match the C types int and uint when we compile for the C or C++ backend. These types may

68

also be available for the JavaScript backend, the LLVM backend, and other backends. For details,
you should consult the compiler documentation. For most operating systems and C compilers, the
int and uint types in C are 4 bytes in size. However, there can be exceptions, so it would be better
not to write code that depends on the actual byte size of these types. The Nim types cint and cuint
are mainly used only for parameter lists of (C) library functions. To match other C integer types like
char, short, long, longlong Nim supports these types when we put a c letter in front of the name like
clong. Again, you should consult the Nim language manual if you need more details, for example,
when you create bindings to external libraries.

Floating-point types
Another important numeric data type is float, for floating-point numbers. Floats are approxima
tions of real numbers. They can also store fractions and are most often printed in the decimal sys
tem with a decimal point, or in scientific notation with an exponent. Examples of the use of vari
ables of the float data type are

var
 mean = 3.0 / 7.9
 x: float = 12
 y = 1.2E3

The result of the division of two float literals is assigned to mean — this result is also of the data type
float, allowing the compiler to infer the same type for mean. If we printed the result of the division,
there would be a decimal point and some digits following it. For variable x we specify the float type
explicitly and assign the value 12. We could use type inference if we assigned 12.0, as the compiler
can recognize from the decimal point that we want a float, not an int variable. In line 3 we use sci
entific notation for the float literal that we assign to y, and the assigned value is 1.2 * 10^3 =
1200.0. Literal values, like 2E3, are also valid float literals — the value would be 2000.0. But literals
with a decimal point and no digits before or after the point — 1. or .2 — are not valid in Nim.

In the current Nim implementation, float variables always occupy 64 bits. Nim also has the data
type float64, which is currently identical to plain float, and float32, which can only store smaller
numbers and has less precision.[2]

That is, when you do a division of two arbitrary floats and print the result, you will get up to 16
valid digits. If you try to print more than 16 significant digits, then the additional decimal places
will be just some form of random garbage. Note: The number of significant digits of a floating-point
number is the total number of digits before and after the decimal point, but possibly leading zero
digits would not be counted. The reason that leading zeros are not significant is just that in the ordi
nary notation of numbers, we always assume that there is just nothing before the first non-zero
digit. For our car odometer, 001234.5 km is identical to 1234.5 km. And whether we give our body
size as 1.80 m or 180 cm makes no difference; both values have 3 significant digits.

Generally, we use floating point numbers whenever integers are insufficient for some reason. For
example, when we have to do complicated mathematical operations which include fractional
operands like Pi, or when we have to do divisions and need the exact fractional value.

The float, float32, and float64 data types provide the +, -, *, and / operators for addition, subtrac

69

tion, multiplication, and division. Unlike with the int types, we never get overflow or underflow
errors with the float types, and also no error for a division by zero. But the result of an operation
of two float operands can be a special value, like sʏsᴛᴇᴍ.Inf, system.NegInf or system.NaN. The first
two indicate over- or underflow, and NaN (Not a Number) indicates that the result of an operation is
not a valid number at all, such as the result of a division by zero or the result of calculating the
square root of a negative number. This behavior is sometimes called saturated arithmetic. When a
variable has one of these special values and we apply further math operations, this value is kept. So
we can detect at the end of a longer mathematical calculation if something went wrong — we have
not to check after every single operation.[3] An interesting property of floating-point numbers is,
that when we test two variables of float type for equality, and one has the value NaN, then the test is
always false. That is, the test a == NaN is always false. If we forget this fact, we might initialize a
float variable to the value NaN and later test with if a == NaN: to check if we have already assigned
a value. However, this is not what we really intend, as that test will always yield a negative result.
The actual test for the value NaN is a == a, which is only false when a has the value NaN; alternatively,
we can use math.isNaN(). More useful constants and functions for the float data types can be found
in the sᴛᴅ/ғᴇɴᴠ module, and functions working with floats like the trigonometric ones are available
from the sᴛᴅ/ᴍᴀᴛʜ module.[4]

For floats, we have the operators +, -, *, and / for addition, subtraction, multiplication, and divi
sion. To calculate powers with integral exponents, you can use the ^ operator, but you must import
it from the sᴛᴅ/ᴍᴀᴛʜ module. The expression x ^ 3 is the same as x * x * x. The ᴍᴀᴛʜ module con
tains many more functions like sin() or cos(), sqrt() and pow(). The function name sqrt() is short for
square-root, and pow() stands for power, so pow(x, y) is x to the power of y when both operands
have type float. For performance-critical code you should always keep in mind that pow() is an
actual function call, maybe a call of a dynamic library that can not be inlined, so a call of pow(x, 2)
is typically a lot slower than a plain x * x. Even when using the ^ operator, as in x ^ 3, we should
be a bit critical. But of course, we always hope that the compiler will optimize all that for us.

The operators +, -, *, and / can also be used when one operand is a float variable and the other
operand is an integer literal. In that case, the compiler knows that we really intend to do a float
operation and converts the integer literal automatically to the float type. However, when one
operand is a float variable and the other is an integer variable, an explicit type conversion is neces
sary, such as in float(myIntVal) * myFloatVal. For the type conversion, we treat the desired type as
a function, as in float(). One explanation for why the int value is not automatically converted to
float in this case is that this may result in a loss of precision, as large int64 values cannot be repre
sented exactly as a float. Well, this reasoning does not really apply for int32, but there is still no
automatic conversion. Indeed, given that Nim is used as a systems programming language, requir
ing explicit conversions in this case seems to be a sensible decision, as it clarifies the programmer’s
intention. Generally, it’s advisable to avoid operations with mixed types, as they may necessitate
type conversions and potentially affect performance. If we really do not care, we may import the
module sᴛᴅ/ʟᴇɴɪᴇɴᴛOᴘs, which defines the arithmetic operations for mixed operands.

Floating-point literals default to the float data type, but, similar to integer literals, we can also
explicitly specify the data type: The suffixes f and f32 specify a 32-bit float type, and d and f64 spec
ify a 64-bit type. We can separate the suffix from the actual number with a ' character, but that is
not required as long as there is no ambiguity. We can also specify float literals in binary, octal, or
hexadecimal notation when we append one of these suffixes. In the case of hexadecimal notation,
the ' is obviously needed to separate the suffix, as f and d are valid hex digits.

70

Similar to integer variables, Nim also supports the compatible types cfloat and cdouble, which
match the C types float and double when the C backend is enabled. For most C compilers, C float
matches Nim’s float32 and C double matches Nim’s float64.

Some CPUs and C compilers also support additional floating-point types beyond the common
float32 and float64. Intel x86 compatible CPUs generally support float80 math operations,
and the GCC C compiler may support float128. However, these types are not yet supported by
the Nim compiler developed by A. Rumpf. There may, however, be external packages that
support these types by calling C functions when the C backend is used.

Two important properties of floats are that not all numbers can be represented exactly, and that
math operations are not absolutely accurate. Recall that in our decimal system, some fractions like
1/2 can be represented exactly as 0.5 in decimal notation, while others like 1/3 can be only approxi
mated as 0.3333… Like all data, floats are stored internally in binary form, following the IEEE Stan
dard for Floating-Point Arithmetic (IEEE 754). In that format, some values, such as 0.1, cannot be
represented exactly. As a consequence, some simple arithmetic operations executed on the com
puter may not give us the exact result we expect. It’s crucial to remember this fact, and to illustrate
it, we will investigate this behavior with a small example program. In this program, we will divide a
few small integers, converted to float, by another integer j, also converted to float, and sum the
result j times:[5]

for i in 1 .. 10:
 echo "--"
 for j in 2 .. 9:
 let a = i.float / j.float
 var sum: float
 for k in 1 .. j:
 sum += a
 echo sum

which generates this output:

--
1.0
1.0
1.0
1.0
0.9999999999999999
0.9999999999999998
1.0
1.0
--
2.0 # for all iterations!
--
3.0 # for all iterations!
--
4.0

71

4.0
4.0
4.0
4.0
3.999999999999999
4.0
4.000000000000001
--
5.0
5.0
5.0
5.0
5.0
5.0
5.0
4.999999999999999
--
6.0
6.0
6.0
6.0
6.0
5.999999999999999
6.0
6.0
--
7.0
7.0
7.0
7.0
7.000000000000001
7.0
7.0
7.0
--
8.0
8.0
8.0
8.0
7.999999999999999
7.999999999999998
8.0
8.000000000000002
--
9.0 # for all iterations!
--
10.0
10.0
10.0
10.0
10.0

72

10.0
10.0
9.999999999999998

The echo() procedure prints up to 16 significant digits of a float value, making the accumulated
tiny arithmetic errors visible. Given our previous remarks, this should no longer be surprising; the
general solution is to round results to fewer than 16 decimal digits before printing. Various ways to
do that will be shown later in the book. A related issue of float arithmetic is caused by scaling and
extinction. When we add numbers with very different magnitudes, the result can be just the value
of the largest number, as in echo 1.0 == 1.0 + 1e-16, which prints true. The tiny summand is just
too small to actually change the result. This is similar to when you switch on a torch on a sunny
day; it will not really become brighter. Perhaps more surprising is that calling echo() with some
simple float literals will print a different value, such as when echo 66.04 which gives
66.04000000000001 for Nim v2.0, while with Python3 we get 66.04 exactly. However, this is only sur
prising for people who do not fully understand what a statement like echo 66.04 does: We already
know that the value 66.04 is converted by the compiler to an internal binary representation, and
then converted back to a decimal string when we run the program. Thus, it’s not surprising that
some tiny inaccuracies can accumulate in this process. Actually, it should be possible to achieve
exactly 16 digits of precision when a sophisticated conversion routine, such as the Ryu or Drag
onBox algorithm is used. We may still wonder why Python seems to consistently get it right. There
are rumors that Python might be "cheating" with some post-processing to produce the string that
the user may prefer.

From the above discussions, it should be clear that testing two floats for equality is often problem
atic. Instead of merely testing for equality, we can define a small epsilon value like eps = 1e-14 and
then write (a - b).abs < eps. This approach is generally good; it is frequently seen and often
works, but not always. Imagine you write a program that processes chemical elements, and you
work with atomic mass and radii. Consequently, the result of the above test could imply that all
atoms in the periodic table have equal mass and size, especially when using the SI system with
meter and kilogram as base units. So an equality test like

const eps = 1e-16 # an arbitrary relative precision
if (a == 0 and b == 0) or (a - b).abs / (a.abs + b.abs) < eps: # avoid div by zero

if (a - b).abs / (a.abs + b.abs + 1e-32) < eps: # a similar check, avoiding also a div
by zero

can be a better solution in the general case. Whenever you need to perform a general equality test,
consider the problem carefully and conduct some tests. The code provided above is merely an
untested possible example.

The term machine epsilon is sometimes used in conjunction with floating-point numbers. This value
is the difference between 1.0 and the next value representable by this data type, and is a measure
for the floating-point precision of a computer system. Nim’s standard library provides a function,
almostEqual(), that compares two float numbers based on this epsilon.

At the end of this section, some remarks about the performance of float data types compared to

73

plain ints: On modern hardware like the popular x86 systems for the basic operations performance
of floats and ints is very similar; addition, subtraction, and even multiplication is typically done in
only one clock cycle, and division can be a bit slower. Even operations like sqrt() which have been
regarded as slow in the past, are now close to a plain addition on modern hardware. As the CPU
does its float arithmetic internally with 64 or even with 80 bits, float32 is not faster than float64,
as long as the operations are not memory bound, that is large data sets are processed so that it is an
advantage when the data types are smaller so that more of it fits into the cache. For tiny microcon
trollers and embedded devices, things are very different, as these devices typically lack floating-
point units.

So the compiler has to emulate all the float arithmetic, maybe by the use of libraries. This is very
slow and produces large executables. So when writing software for modern desktop PCs, there is no
reason to try to avoid float math, when solving the problem with float is easier. When the data
spans a wide range, for example, from nanometers to millions of kilometers, or when operations
like square root or trigonometric functions are needed, there is typically no reason to avoid float.
In cases where both floats and ints may work, it is generally a good strategy to initially try using
ints. Ints may still provide better performance for SIMD, threading, and parallel processing, as ints
may avoid the expensive saving of floating-point CPU registers. For restricted hardware, we should
better try to avoid float math. For restricted hardware, it would be better to try to avoid float
math. However, this is a complex topic, and this advice only provides some basic recommendations,
which might not apply in every specific case. So finally you have to decide for yourself, and as
always it is a good idea to do some performance tests. In the Appendix of this book, you can find a
small test for the performance of various int and float operations in section Performance of multi
plication vs. division.

References:

• https://en.wikipedia.org/wiki/Floating-point_arithmetic

• https://stackoverflow.com/questions/2100490/floating-point-inaccuracy-examples

• https://forum.nim-lang.org/t/5983

Distinct types
Before we continue with subrange types, we should introduce the distinct types. In the real world,
there are many quantities for which the set of meaningful mathematical operations is restricted,
and these should not be mixed with quantities of other types. For example, we may have physical
quantities such as time and distance, measured in seconds and meters respectively, mapped to the
float or int data type. While adding seconds and adding meters is a valid operation, adding sec
onds to meters makes no sense and would be a program bug if it should occur in the program code.
However, dividing a distance by a time period, resulting in the average speed, would be a valid
operation. Nim provides the distinct keyword, which allows the definition of new data types. These
new types are based on existing ones but are not compatible with them or with other distinct
types. The newly defined distinct types have no predefined operations; we have to define all
desired operations ourselves.

type
 Time = distinct float # in seconds

74

https://en.wikipedia.org/wiki/Floating-point_arithmetic
https://stackoverflow.com/questions/2100490/floating-point-inaccuracy-examples
https://forum.nim-lang.org/t/5983

 Distance = distinct float # in meters

var t: Time = 0.2 # not allowed
var t: Time = Time(0.2)

For distinct types, we have to define all the allowed operations ourselves. We can convert distinct
types to the base types and then use operations of the base type, or we can borrow operations from
the base type by use of the {.borrow.} pragma. Using distinct types can be complicated when the
new type should support many operations, but it can make our code safer. For some data types with
a very limited set of operations, distinct types can be used easily. Distinct types are explained in
detail in the Nim language manual; we might explain them in more detail in later sections. For now,
it is enough that we know about their existence.

Subrange types
Sometimes it makes sense to limit the range of numeric variables to only a sub-range. For this, Nim
uses the range keyword with the following notation: range[LowVal .. HighVal]. Values of this type
can never be smaller than LowVal or larger than HighVal. In Nim v2.0 we can also define range
types by leaving out the range[], that is, by using just two constants separated by ...

type
 Year = range[2020 .. 2023] # software update required at least for 2024!
 Month = range[1 .. 12]
 Day = 1 .. 31 # same as range[1 .. 31]

var a: int = 0
var d: Day = 1 # OK
d = 0 # compile-time error
d = a # run-time test and error
echo d

In the above example, the base type of the defined ranges is int. As a result, the ranges are compati
ble with the predefined int type, and we can assign values of int type to our range types, and vice
versa. In our example, the size of the range types is the size of the int base type, but of course, we
could use other base types, like type Weekday = 1.int8 .. 7.int8. If we try to assign to a range type
a value that falls not into the allowed range, then we get a compile-time or run-time range error.
This can help us to prevent or to discover errors in our programs. Note that whenever we use range
types, the compiler may have to add additional checks to ensure that variables are always
restricted to the specified range. This check is active in debug mode and also when we compile with
the -d:release option. It is only ignored when we compile with -d:danger or when we explicitly dis
able range checks. Therefore, using a large number of range types may increase code size and
decrease performance. For the example above, the line with the assignment d = a generates a run
time check. An important and often used range type is the data type Natural, defined as range[0 ..
int.high]. This type is compatible with the int type and does not wrap around as uint would. It is
regularly used as the type for proc parameters when the arguments must be non-negative. In the
procedure body, we sometimes copy arguments of natural type to an ordinary integer — this way,
we can ensure a non-negative start value and can avoid many range checks in the procedure body.

75

We can also declare sub-range types with float base types like type Probability = range[0.0 ..
1.0].

Note that we can still mix different sub-range types:

var d: Day = 13
var m: Month = 3
d = d + m

Such an operation is generally a bug. To prevent it, we can put the distinct keyword in front of our
ranges. However, we would then have to define the allowed operations ourselves or borrow them
from the base type.

Enumeration types
Enumeration types are shortened as enum in Nim. While enums in C are nothing more than integers
with some special syntax for creation, Nim’s enums are more complex.

In Nim, enums can be used whenever some form of symbols are needed, such as the colors red, yel
low, and green for a traffic light, or the directions north, south, east, and west for a map or a game.

Most of the time, we declare an enum type and the corresponding values by simply listing them like

type
 TrafficLight = enum
 red, yellow, green

We can then use variables of the type TrafficLight like

var tl: TrafficLight
tl = green
if tl == red:
 tl = ... # some other enum value

Enums support assignment, plain tests for (in)equality and for less or greater. Additionally, the func
tions succ() and pred() are defined for enums to get the successor or predecessor of an enum, ord() or
int() deliver the corresponding integer number and the $ operator can be used to get the name of
an enum. We can also iterate over enums, so we can print all the colors of our TrafficLight by

for el in TrafficLight:
 echo el.ord, ' ', $el

Ordinary enums start at 0 and use continuous numbers for the internal numeric value, which allows
enums to be used as array indices.[6]

76

type
 A = array[TrafficLight, string]

var a: A
a[red] = "Rot"
echo a[red]

However, we can also assign custom numbers like

type
 TrafficLight = enum
 red = -1, yellow = 3, green = 8

We should avoid doing this, as these 'enums with holes' generate some problems for the compiler
and may later be deprecated. For example, array indexing or iterating is obviously not possible for
enums with holes.

It is also possible to set the string that the stringify operator $ returns, like in

type
 TrafficLight = enum
 red = "Stop"
 yellow = (2, "Caution")
 green = ("Go")

Here the assigned numerical values should be 0, 2, and 3. Currently, the enum’s numerical values
must always be specified in ascending order.

When there are many enums in a program, name conflicts may occur. For example, we may have an
additional enum type named BaseColor, which also has red and green members. For such cases, the
{.pure.} pragma exists:

type
 BaseColor {.pure.} = enum
 red, green, blue

With the pure pragma applied, we can use the fully qualified enum name when necessary, like
BaseColor.red. But we can still use unqualified names like blue when there is no name conflict.

With the upcoming Nim 2.0, the compiler will have improved handling of enums: The pure pragma
is not needed anymore, and for set expressions like {BaseColor.red, green} the compiler knows that
the second set member is a BaseColor as well, so we do not need the prefix anymore. For details, see
the Appendix.

77

Boolean types
Boolean types are used to store the result of logical operations. The type is called bool in Nim and
can store only two values, false and true. Although we have only two distinct states for a boolean
variable and so one single bit would suffice to store a bool, generally, a whole byte (8 bits) is used
for storing a boolean variable. Most other programming languages, including C, do the same. The
reason is that most CPUs can not access single bits in the RAM — the smallest entity that can be
directly accessed in RAM is a byte. The default initial state of a boolean variable is false, corre
sponding to a byte with all bits cleared.

var
 age = 17
 adult: bool = age > 17
 iLikeNim = true
 iLikeOtherLanguageBetter = false

In the third line, we assign the result of a logical comparison to the variable adult. The next two
lines assign the boolean constants true and false to the variables, with their type bool inferred.

Variables of type bool support the operators not, and, or and xor. Not inverts the logical value, a and
b is only true when both values are true, and false otherwise. And a or b is true when at least one
of the values is true, and only false when both values are false. Xor is not used that often. It is
called exclusive or; a xor b is false when both values have the same logical state, i.e., when both are
true, or both are false. When the values are not the same, then the result of the xor operator is true.
The xor operator makes more sense for bit operations, which we will learn later — for the boolean
type, a xor b is identical to a != b.

When using conditional execution, some people like to write expressions like if myBoolExp ==
false:, which is identical to if not myBoolExp:. While this may be permissible, avoid writing if
myBoolExp == true: as it is redundant.

Sometimes it is useful to know that false is mapped to the int value 0, and true to the int value 1.
That is similar to the C language, but C has no real boolean type, instead, the numerical value 0 is
interpreted as false in conditional expressions, and all non-zero values are interpreted as true.

var a: int = 0
var cond: bool
if cond:
 a = 7

a = 7 * cond.int

The effect of the last line is identical to the if statement above. In very, very rare cases, working
with the actual int value of boolean variables may make sense, but generally, we should avoid that.
Later in the book, there is a section about branchless code where we will present a procedure that
actually may get faster by using such a trick.

78

Characters
The data type for single characters in Nim is called char. A variable of this type has 8 bits and is
used to store individual characters. Indeed, it stores 8-bit integers which are mapped to characters.
The mapping is described by the ASCII table. For example, the integer value 65 in decimal is
mapped to the character A. When we use single character literals, we have to enclose the letter in
single quotes. As only 8 bits are used to store characters, we only have 256 different values, includ
ing upper and lower case letters, punctuation characters, and some characters with a special mean
ing like a newline character to move the cursor in the terminal to the next line, or a backspace
character to move the cursor one position backward. In practice, single characters aren’t used fre
quently. This is because they are typically grouped into sequences known as strings to construct
text.

The initial ASCII table contains only the characters with numbers 0 up to 127, here is an overview
generated with the small program listed in the Appendix:

Visible ASCII Characters

 +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13 +14 +15
 0
 16
 32 ! " # $ % & ' () * + , - . /
 48 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
 64 @ A B C D E F G H I J K L M N O
 80 P Q R S T U V W X Y Z [\] ^ _
 96 ` a b c d e f g h i j k l m n o
112 p q r s t u v w x y z { | } ~

The position of a character in the table is calculated by summing the number on the left with the
one on top. For instance, character A is at position 64+1=65. This is the value that the Nim standard
functions ord('A') or int('A') would return. The characters with a decimal value less than 32 can
not be printed and are called control characters, like linefeed, carriage return, backspace, audible
beep, and such. Character 127 is also not printable and is called DEL. An important property of this
table is the fact that decimal digits and upper- and lower-case letters form contiguous blocks. So to
test, for example, if a character is an uppercase letter, we can use this simple condition: c >= 'A'
and c <= 'Z'.

Characters with ord() > 127 are so-called umlauts, exotic characters of other languages, and some
special characters. However, these characters can look different on different computers, as their
appearance depends on the active code page, which maps positions to the actual character, and
there are multiple code pages. When we need more than the plain ASCII characters, then we use
strings in Nim, which can display many more glyphs by using UTF-8 encoding.

The control characters with a decimal value less than 32 cannot be typed on the keyboard directly,
and for some characters with a decimal value greater than 126, it can be difficult to enter them on
some keyboards. For these characters, as well as for all other characters, escape sequences can be
used. Escape sequences start with the backslash character, and the following characters are inter
preted in a special way: The backslash can follow a numeric value in decimal or hexadecimal

79

encoding, or a letter, which is interpreted in a special way. We mentioned already that the charac
ter 'A' is mapped to the decimal value 65, which is its position in the ASCII table. So instead of 'A', we
could use the escape sequence '\65' for this character. Or, as decimal 65 is 41 in hexadecimal nota
tion (4 * 16^1 + 1 * 16^0) we can use '\x41' where the x indicates that the following digits are
hexadecimal. Given that remembering the numeric value of frequently used control characters can
be challenging, an alternative notation that involves a letter following the backslash can be
employed. For the important newline character, we can use the decimal numeric value '\10', the
hexadecimal value '\xA', or the symbolic form '\n'. Here, the letter n stands for newline.

We can consider the backslash character, which initiates escape sequences, as a unique cautionary
symbol for the compiler, indicating that the subsequent characters must be interpreted in a special
way.

It is important that you understand that all these escape sequences are only a way to help the pro
grammer to enter these invisible control characters — the compiler replaces the control sequences
immediately with the correct 8-bit value from the ASCII table, so in the final compiled executable
'\65' or '\n' are both only a plain 8-bit integer value:

var a, b: char
a = 'A'
b = '\65'
echo a, ord(a), b, ord(b) # if you don't know the output, read again this section and
run this code.

The following table lists a few important control characters:

Decimal Hexadecimal Sym
bolic

Meaning

10 xA \n, \l newline or linefeed — move the cursor one position down

12 xC \f formfeed

9 x9 \t tabulator

11 xB \v vertical tabulator

92 x5C \\ backslash

39 x27 \' single-quote, apostrophe

7 x7 \a alert, audible beep

8 x8 \b backspace

27 x1B \e Escape, [ESC]

13 xD \r, \c return or carriage return — move the cursor at the beginning
of the line

The hexadecimal numbers after the \x character can be in upper or lower case and can have one or
two hexadecimal digits. For symbolic control characters like '\a' for alert, the upper case variant '\A'
seems to be identical currently. Entering a single quote as ''' does give an error message, so you
have to escape it as '\''. Unfortunately, by supporting this form of escaping it becomes impossible

80

to enter a backslash character directly, so we have to escape the backslash character as '\\' to print
a single backslash.

For Nim, the most important control character is '\n', which is used to start the output in a termi
nal window at the beginning of a new line. But '\n' is generally not used as a single character but
embedded in strings, that is, sequences of characters. We will learn more about strings soon. Note
that the echo() function inserts a newline character automatically after each printed line, but the
write() function does not:

echo 'N', 'i', 'm'
stdout.write 'N', 'i', 'm', '\n'

It might be slightly confusing that while we use the backslash character as an escape symbol, the ta
ble above includes an entry '\e', also referred to as [ESC]. These '\e' control character with deci
mal value 27 is fully unrelated to the backslash character that we use to type in control characters.
[ESC] is a different special character to start control sequences, it was used in the past to send spe
cial commands to printers or modems and can be used to control font style or colors in terminal
windows.

Nim’s control characters should, with few exceptions, be identical to the control characters of the C
language, so you may also consult C literature for more details.

Ordinal types
In Nim, integers, enumerations, characters, and boolean types are ordinal types. Ordinal types are
countable and ordered, and for each of these types, a lowest and largest member exists. The integer
ordinal types support the inc() and dec() operations to get the next larger or next smaller value, and
the other ordinal types use succ() and pred() for this operation. These operations can produce over
flow- or underflow-like errors if applied to the largest or smallest value. The function ord() can be
used on ordinal types to get the corresponding integer value. Note that unsigned integers are cur
rently not called ordinal types in Nim and that these unsigned types wrap around, instead of gener
ating overflow and underflow errors.

Sets
In mathematics, sets are considered an unordered collection where we can test membership (x is
included in mySet) and perform operations like building the union of multiple sets. In Nim, we can
have sets of all the ordinal types and the unsigned integer types, but due to memory restrictions,
integer types larger than two bytes can not be used as set base types. All elements in a set must
have the same base type. A set can be empty, or it can contain one or multiple elements. A specific
element can either be contained in a given set or not, but it can never be contained multiple times.
A very basic set operation is to test if an element is or is not contained in a set. Sets are unordered
data types; that is, sets containing the same elements are always equal, regardless of the sequence
in which we added the elements. Important set operations are building the union and building the
difference of two sets with the same base type: The union of set a and set b is a set that contains all
the elements that are contained in set a or in set b (or in both). The intersection of set a and set b is
a set that contains only elements that are contained in set a and in set b.

81

The mathematical concept of sets maps well to words and bits of computers, as most CPUs have
instructions to set and clear single bits and to test if a bit is set or unset. CPUs can execute and, or
and xor operations, which correspond to the union and intersection operations in mathematical
sets.

Nim supports sets with base type bool, enum, char, int8, uint8, int16, and uint16. Note that we need a
bit in the computer memory for each member of the base type. The types char, int8, and uint8 are
8-bit types and can have 2^8 = 256 distinct values, thus requiring 256 bits in the computer memory
to represent such a set. That would be 32 bytes or four 64-bit words. To represent a set of the base
type uint16 or int16, we need already 2^16 bits, that is 2^13 bytes or 2^10 words on a 64-bit CPU. So
it becomes clear that supporting base types with more than 16 bits makes not much sense.

While testing whether an element is included in a set with the in or notin operators is always a fast
operation, other operations, like building the intersection or union, and set comparison operations,
may not be as fast with the int16 or uint16 base types, as these operations involve processing the
whole set — that is, 2^10 words on a 64-bit CPU.

We will start our explanations with sets that have a character base type, as these sets are both easy
to understand and very useful. Let us assume that we have a variable x of character type, and we
want to test if that variable is alphanumeric, that is if it is a lower or upper case letter or a digit. A
traditional test would be (x >= 'a' and x <= 'z') or (x >= 'A' and x <= 'Z') or (x >= '0' and x
<= '9'). For this test, we use the fact that letters and digits build continuous blocks in the ASCII ta
ble. Using Nim’s set notation, we can write that in a simpler form:

const
 AlphaNum: set[char] = {'a' .. 'z', 'A' .. 'Z', '0' .. '9'}

var x: char = 's'
echo x in AlphaNum

Here, we have defined a constant of set[char] type that contains lower and upper case letters and
decimal digits. We used the range notation to save a lot of typing ({'a', 'b', 'c', …}). It works only in
this case, as we know that all the lowercase letters, uppercase letters, and decimal digits form an
uninterrupted range in the ASCII table.

With that definition, we can use a simple test with the in keyword. This test is equivalent to the pro
cedure call, AlphaNum.contains(x). Moreover, this set membership test should be faster than the
test using <= and or, as mentioned above.

Some older languages, like C, do not have a dedicated set data type. However, since sets are so use
ful and efficient, C emulates these operations using bit-wise and and or operations in conjunction
with bit shifts.

Two important operations for sets are building the union and the intersection:

const
 AlphaNum: set[char] = {'a' .. 'z', 'A' .. 'Z', '0' .. '9'}
 MathOp = {'+', '-', '*', '/'} # set[char]

82

 ANMO = AlphaNum + MathOp # union
 Empty = AlphaNum * MathOp # intersection

The constant ANMO now contains all the characters from AlphaNum and MathOp - that is, letters, digits,
and math operators. The constant Empty is assigned all the characters that are concurrently con
tained in set AlphaNum and in set MathOp. However, as there isn’t a single common character, the set
Empty is indeed empty. It’s not easy to remember the two operators, + and *, for union and intersec
tion. For the intersection operator * it may help when we imagine the set members as bits, and we
assume that we multiply the bits of both operands bitwise, that is we multiply the set or unset bits
at corresponding positions each. The resulting bit pattern would have set bits only in positions
where both arguments have set bits.

We can use the functions incl() and excl() to add or remove single set members:

var s: set[char]
s = {} # empty set
s = {'a' .. 'd', '_'}
s.excl('d')
s.incl('?')

The result is a set containing the letters a, b, c and the characters _ and ?. Note that calling incl()
doesn’t affect the set when the value is already included, and similarly, calling excl() has no effect
when the value isn’t present in the set.

Another operation is the difference of two sets — a - b is a set that contains only the elements of a
that are not contained in b. In Nim, there is currently no operator for the complement or the sym
metric difference of sets available. We can produce a set complement by using a fully filled set and
then removing the elements of which we want the complement. For a character set, this would look
like {'\0'..'\255'} - s, where s is the set to be complemented. And the symmetric difference of set
a and set b can be generated by the operation (a+b) - (a*b) or by (a-b) + (b-a).

As the not operator binds more tightly than the in operator, we have to use brackets for the
inverted membership test, like not(x in a), or we can use the notin operator and write x notin a.
We can test for equality of sets a and b like a == b and for subset relation a < b or a <= b. a <= b
indicates that b contains all members of a or more, and a < b indicates that b contains all members
of a plus at least one more element.

Finally, we can use the function card() to get the cardinality of a set variable, that is the number of
contained members.

It is also worth mentioning that we can have character sets that are restricted to a range of charac
ters:

type
 CharRange = set['a' .. 'f']

var y: CharRange = {'x'} #invalid

83

var y: CharRange = {'b', 'd'}
echo 'c' in y

In the code above, the compiler detects the first assignment to the variable y as invalid.

Sets of numbers work in principle in the same way as sets of characters. A key detail to note is that
in Nim, integer numbers are generally 4 or 8 bytes large, but sets can only contain numbers with 1-
or 2-byte size. Therefore, we have to specify the type of set members explicitly:

type
 ChessPos = set[0'i8 .. 63'i8]

var baseLine: ChessPos = {0.int8 .. 7.int8}
var baseLine: ChessPos = {0 .. 7} # this also works
var p: int8
echo p in baseLine

In the code above, we defined a set type that can contain int8 numbers in the range 0 to 63.

We can also use another notation for numeric sets when we define an explicit range type like in

type
 ChessSquare = range[0 .. 63]
 ChessSquares = set[ChessSquare]

const baseLine = {0.ChessSquare .. 7.ChessSquare}
or
const baseLineExplicit: ChessSquares = {0.ChessSquare .. 7.ChessSquare}
assert baseLine == baseLineExplicit

An important detail to note is that Nim’s sets support negative numbers:

type
 XPos = set[-3'i8 .. +2'i8]

var xp: XPos = {-3.int8 .. 1.int8}
var pp: int8 = -1
echo pp in xp

Enum sets are also very useful and can be used to represent multiple boolean properties in a single
set variable instead of using multiple boolean variables for this purpose:

type
 CompLangFlags = enum
 compiled, interpreted, hasGC, isOpenSource, isSelfHosted

84

 CompLangProp = set[CompLangFlags]

const NimProp: CompLangProp = {compiled, hasGC, isOpenSource, isSelfHosted}

Enum sets can be used to interact with functions of C libraries, where for flag variables often or’ed
ints are used. For example, for the Gintro C bindings, there is this definition:

type
 DialogFlag* {.size: sizeof(cint), pure.} = enum
 modal = 0
 destroyWithParent = 1
 useHeaderBar = 2

 DialogFlags* {.size: sizeof(cint).} = set[DialogFlag]

Here, the {.size.} pragma is used to ensure that the byte size of that set type matches the size of inte
gers in C languages.

When we define a set of enums in this way to generate bindings to C libraries, then we have to
ensure that the enum values start with zero, otherwise, Nim’s definition will not match with the C
definition. For example, in the gdk.nim module we have

type
 AxisFlag* {.size: sizeof(cint), pure.} = enum
 ignoreThisDummyValue = 0
 x = 1
 y = 2
 pressure = 3
 xtilt = 4
 ytilt = 5
 wheel = 6
 distance = 7
 rotation = 8
 slider = 9

 AxisFlags* {.size: sizeof(cint).} = set[AxisFlag]

The first enum with ordinal value zero was automatically added by the bindings generator script to
ensure type matching. Nim’s developers sometimes recommend using plain (distinct) integer con
stants for C enums. That may appear easier, but integer constants provide no namespaces, so
names may be aFlagWheel instead of AxisFlag.wheel or plain wheel when there is no name conflict
for pure enums. And with integer constants, we have to combine flags by an or operation like
(aFlagWheel or aFlagSlider) instead of using the clean {AxisFlag.wheel, slider} syntax.

Can we print sets easily? As sets are an unordered type, it is not fully trivial, but we can iterate
over the full base type and check if the element is contained in our set like

85

var s: set[char] = {'d' .. 'f', '!'}

for c in 0.char .. 255.char:
 if c in s:
 stdout.write(c, ' ')
echo ' '

! d e f

We will learn how the for loop works soon. Note that the sequence in which the set members are
printed is determined by our query loop, not by the set content itself, as sets are unordered types.

At the end of this section, we should mention that Nim’s standard library has also a module called
sᴇᴛᴜᴛɪʟs that provides a few useful functions and a template: The function '[]=' allows to write s[x]
= false or s[x] = true to exclude or to include value x to set s, instead of using the incl or excl
notation. And the functions fullset() and complement() make it easy to get a set that includes all pos
sible members, and to complement ("invert") a set. Finally, the template toSet() can be used to con
vert other data types to corresponding sets.

Strings
The string data type is a sequence of characters. It is used whenever textual input or output opera
tions are performed. Usually, it is a sequence of ASCII characters, but characters in the string can
also be interpreted as UTF-8 Unicode characters, which allows the display of a vast range of sym
bols as long as the necessary fonts are installed on your computer and you can input them. Note
that Unicode characters may not always be accessible via a simple keystroke. For now, we will only
use ASCII characters, as they are simpler and work everywhere. String literals must be enclosed in
double quotation marks. Nim’s string type is similar to the Nim seq data type: both are homoge
neous variable-size containers. This means that a string, like a seq, expands automatically when
you append or insert characters or other strings. Nim’s seq data type is discussed later in the book
in some detail. Don’t confuse short strings consisting of only one character with single characters:
A string is a non-trivial entity with an internal state like a data buffer (the characters it actually
contains), length, and storage capacity, while a variable of the char type is nothing more than a sin
gle byte interpreted in a specific way. Therefore, a string like "x" is fundamentally different from
'x'.

var
 str: string = "Hello"
 name: string
echo "Please tell me your name"
name = readLine(stdin)
add(str, ' ')
echo str, name

In the above example code, we declare a string variable called str and assign it the initial literal

86

value "Hello". We use the echo() proc to ask the user for his name and use the readLine() procedure
to read the user input from the terminal. To demonstrate how characters can be added to an exist
ing string variable, we call the add() procedure to append a space character to our str variable and
finally call the echo() procedure to print the hello message and the name to the screen. Note that
the echo() proc automatically terminates each output operation with a jump to the next line. If you
desire an output operation without a new line, you can utilize the similar write() procedure. But
write() needs an additional first parameter, for which we use the special variable stdout when we
want to write to the terminal window.

So we could substitute the last two lines of the above code by

write(stdout, str)
write(stdout, ' ')
echo name

The Nim standard library provides a lot of functions for creating and modifying strings, most of
these functions are collected in the sʏsᴛᴇᴍ and in the sᴛʀᴜᴛɪʟs module. The most important proce
dures for strings are len() and high(). The len() fiunction returns the length of a string, namely, the
number of ASCII characters or bytes that the string currently contains. The empty string "" has
length zero. Note that the plain len() function returns the number of 8-bit characters, not the num
ber of Unicode glyphs, when the string should be interpreted as Unicode text. To determine the
number of glyphs of Unicode strings, you should use some of the ᴜɴɪᴄoᴅᴇ modules. The high() func
tion is very similar to the len() function; it returns the index of the last character in the string. For
each string s, high(s) == len(s) - 1; hence, high("") is -1. Remember that Nim supports the method
call syntax, so we can also write s.len instead of len(s).

The most important operators for strings are the subscript operator [] which allows access to indi
vidual characters of strings, and the .. slice operator, which allows access to sub-strings. The first
character in a string always has the index zero. For concatenation of string literals or string vari
ables, Nim uses the & operator.

var s = "We hate " & "Nim?"
s[3 .. 6] = "like"
s[s.high] = '!'

In the example above, we define the string variable s by the use of two literal strings to show the
use of the concatenation operator. In line two we use the slice operator to replace the sub-string
"hate", that is, the characters with index position 3 up to 6, by the string literal "like". In this case,
the replacement has exactly as many characters as the text to replace, but that is not necessary: We
can replace sub-strings with longer or shorter strings, which includes the empty string "" to delete
a text area. In the last line of the above example, we use the subscript operator [] to replace the sin
gle character '?' at the end of our string with an exclamation mark. For subscript and slice opera
tors, Nim also supports a special notation that indicates indexing from the end of the string. Python
and Ruby use negative integers for this purpose, whereas Nim uses the ^ character. So [^1] is the
last character, [^2] the one before the last. So we could have written s[^1] = '!' for the last line of
our code fragment above. The reason Nim does not use negative integers for this purpose is that
Nim arrays don’t have to start at index zero; they can start with an arbitrary index, including nega

87

tive indices. Therefore, for negative indices, it may not always be clear whether a regular index or a
position from the end of the {string] is intended. The term s[^x] is equivalent to s[s.len - x]. We
will learn some more details about the slice operator in a later section when we have introduced
arrays and sequences.

Another important operator for strings is the "toString" or stringify operator $. It can be applied to
variables of nearly all data types and returns their string representation, which can then be
printed. Some procedures like echo() apply this operator to their arguments automatically. When
we define our own data types, it can make some sense to define the $ for them, in case we need a
textual representation of our data, perhaps only for debugging purposes. Note that directly apply
ing the $ operator on a string has no effect and is ignored, as the result would not change.

strings can contain all characters of the char data type, including the control characters. The new
line character '\n', which is used at the end, and sometimes as well in the middle, of strings to
start a new line, is the most essential control character for strings. For strings, Nim also supports
the virtual character "\p" to encode an OS-dependent line break. When compiled for Windows, "\p"
is automatically converted to "\r\n", and to a plain '\n' on Linux. Note that "\p" can be used in
strings, but not as a single character, as it is two bytes on Windows. "\p" is only needed to support
very old Windows versions or potentially another exotic operating system, as modern Windows
recognizes plain '\n' well.

Since strings support utf-8 Unicode, they can use an escape sequence starting with "\u" to insert
Unicode code points. The "\u" follows exactly 4 hexadecimal digits or an arbitrary number of hex
digits enclosed in curly braces {}.

Because string literals are enclosed in quotation marks, it follows that strings cannot directly con
tain this character. We have to escape it as in "\"Hello\", she said".

It may be worth mentioning that Nim strings use copy semantics for assignment. Since we have not
yet introduced references or pointers, you should expect copy semantics. Strings behave just like
all the other simple data types we have used before, such as integers, floating-point numbers,
enums, and characters:

var
 s1: string
 s2: string
s1 = "Nim"
s2 = s1
s1.add(" is easy!")
echo s1 & "\n" & s2

The output is

Nim is easy!
Nim

The assignment s2 = s1 creates a copy of s1, so the subsequent add() operation modifies only s1, not
s2. This might not be surprising to you, but other programming languages may behave differently.

88

For example, the assignment might not copy the textual content but only create a reference to the
first string, so that modifying one of them also affects the other. We will delve deeper into the con
cept of references when we introduce the object data type.

Entering Unicode characters

UTF-8 is a variable-width character encoding. To cite the introduction section from
https://en.wikipedia.org/wiki/UTF-8:

UTF-8 is capable of encoding all 1,112,064[nb 1] valid character code points in Unicode using
one to four one-byte (8-bit) code units. Code points with lower numerical values, which tend
to occur more frequently, are encoded using fewer bytes. It was designed for backward com
patibility with ASCII: the first 128 characters of Unicode, which correspond one-to-one with
ASCII, are encoded using a single byte with the same binary value as ASCII, so that valid ASCII
text is valid UTF-8-encoded Unicode as well. Since ASCII bytes do not occur when encoding
non-ASCII code points into UTF-8, UTF-8 is safe to use within most programming and docu
ment languages that interpret certain ASCII characters in a special way, such as "/" (slash) in
filenames, "\" (backslash) in escape sequences, and "%" in printf.

In Nim, there are four ways to enter Unicode characters: by using hexadecimal digits following the
"\x", by using a Unicode code point following the "\u", by typing the Unicode sequence directly on
your keyboard either as one single keystroke when your keyboard layout supports it, or as a special
OS-dependent sequence of keystrokes:

echo "\xe2\x99\x9A \xe2\x99\x94"
echo "\u265A \u2654"
echo "\u{265A} \u{2654}" # {} is only necessary for more than 4 hex digits
echo "♚ ♔"

The code above shows three ways to print the symbol for a black and a white king in a chess game.
In the first line, we typed the Unicode sequence directly as hexadecimal digits. This method is
rarely used today. In the second line, we used "\u" to enter the code point directly. We obtained the
code from https://en.wikipedia.org/wiki/List_of_Unicode_characters. Lastly, the glyph was entered
directly into an editor. For some Linux editors, like Gedit, you can hold down the Shift and Control
keys, type u, release all keys, and then type the Unicode digits like 265a, followed by a space. See
https://en.wikipedia.org/wiki/Unicode_input for details and other operating systems.

The cstring data type

In the C programming language, strings are pointers to sequences of characters terminated by a
null character '\0'. [7] The end of such a C string is generally marked with the character '\x0' — a
null byte with all bits cleared. C functions like printf() need these "\x0" characters to determine the
end of the C string. While Nim strings are complex entities that store their current size and other
properties and can grow dynamically, the character sequence of Nim strings has also a hidden ter
minating '\x0' character at the end to make them compatible with C strings. Nim also has the data
type cstring, called "compatible string" in modern Nim, which matches the strings in C language if

89

https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/List_of_Unicode_characters
https://en.wikipedia.org/wiki/Unicode_input

we compile as usual with the C backend. The cstring data type is used in binding definitions for C
libraries, but as cstrings cannot grow and support only a few string operations, they are only used
in rare cases in ordinary Nim source code. The Nim compiler automatically passes the zero-termi
nated data buffer of Nim strings to C libraries whenever we call a C library, so there is no expen
sive type conversion involved. But the other way is much more expensive: When you have an exist
ing cstring and need a Nim string with the same content, then a simple conversion is not possible
as a Nim string is a different, more complex entity. Therefore, we have to create a Nim string and
copy the content. You can use the stringify operator $ for this, as in myNimStr = $myCString. Gener
ally, string creation is an expensive operation compared to simple operations like adding two num
bers, so when performance matters, one should try to avoid unnecessary string creation and other
unnecessary string operations as well. This is particularly important in loops, which are executed
frequently. We will explain more about the internals of strings and why string creation and
dynamically allocating memory is expensive in later sections of the book.

When we access text ranges with the slice operator or single characters with the subscript
operator, we should never access indices beyond the current last index, which is the index
mystr.high or ^1. If we do that, we get an exception, as that index would contain undefined
data or would not exist at all. We said earlier that Nim strings grow automatically if we insert
or append data. But that does not mean that we can use the subscript or slice operator to
access characters after the current end of the string. Such an operation wouldn’t make much
sense. Imagine we have a string var str = "Nim" and now use the subscript operator and
assign a character at position 10 with str[10] = '!'. What should be the content of characters
4 to 9? Well, maybe spaces would make some sense, but in fact, such access after the cur
rently last valid character of the string is forbidden. You could use str.add(" !") for this pur
pose.

Another operation you should avoid is inserting the '\x0' null byte character somewhere in
an existing Nim string. Nim stores the actual length of strings explicitly and additionally ter
minates the end of the actual data with a '\x0' to make the string compatible with C strings
and allow passing the data buffer directly to the C library functions. A '\x0' character some
where in the middle of a Nim string would generate an inconsistency, as C library functions
like printf() would regard '\x0' as the string end marker, while pure Nim functions may
assume still a longer string. In very rare cases, intermediate '\x0' bytes in strings can pose a
problem when we receive the actual byte sequence from C libraries. For the same reason, a
Nim string is not identical to or fully compatible with a seq[char], as a seq[char] may contain
multiple zero bytes, while Nim strings should not.

Escape sequences in strings

We learned about control characters already in the section about characters, and earlier in this sec
tion, we mentioned that strings can also contain control characters. As the use of control charac
ters may not be really easy to understand, we will explain their use in strings in some more detail
and give a concrete example.

The most important control character for strings is the newline character, which moves the cursor
in the terminal window to the beginning of the next line. The echo() procedure prints that character
automatically after each output operation. Indeed, it can be important to terminate each output

90

operation with that character, as the output can be buffered, and writing just a string without a ter
minating newline may not appear at once on the screen, but can be delayed. That is bad when the
user is asked something and should respond, but the message is still buffered and not yet visible.

The problem with special characters like backspace or newline is that we cannot enter them
directly with the keyboard.[8] To solve that problem, escape sequences were introduced for most
programming languages. An escape sequence is a special sequence of characters that the compiler
can discover in strings and then replace with a single special character. Whenever we want a new
line in a string, we type it as "\n", which is the backslash character followed by an ordinary letter n,
"n" standing for newline.

echo "\n"
echo "Hello\nHello\nHello"

The first line prints two empty lines — one because the \n generates a jump to the next line, and
another because echo() automatically adds a newline. The second line prints three lines, each con
taining the word Hello, and the cursor is moved below the last Hello because echo() automatically
adds another newline character.

Historically, older versions of Windows employed a two-character sequence, '\r' (carriage return)
and '\n' (linefeed), to initiate a new line. The carriage return would reset the position to the start of
the line, and the linefeed would move it downward. You might encounter these control characters
in older Windows text files, marking the end of each line. This combination was also common in
older printers, facilitating direct text file printing by just copying the file to the printer device on
Windows OS. In Nim, we have the "\p" escape sequence, which is known as the platform-dependent
newline. On a Windows system, "\p" translates to "\r\n". In other words, when a program is com
piled on Windows, the compiler replaces "\p" in our strings with both a carriage return and a line
feed character. Conversely, if the program is compiled on Linux, "\p" is replaced with only a new
line character. Modern Windows versions, however, support '\n', allowing us to use this character
more universally. The control character '\n' corresponds to the decimal value 10, and Nim provides
an alternative control character '\l' with the same value. Similarly, the control character '\r', with a
decimal value of 13, can also be expressed as '\c' in Nim. As a result, you may see descriptions indi
cating that "\p" maps to "\c\l" on Windows, equivalent to "\r\n". Currently, Nim allows the use of cap
ital letters in place of the lowercase ones for these control characters, namely '\L', '\C', '\N', and '\R'

Raw strings and multi-line strings

In rare situations, you may want to print exactly what you have typed, so you do not want the com
piler to replace a '\n' with a newline character. You can do that in two ways: You can escape the
escape character, that is, you put one more backslash in front of the existing backslash. When you
print the string "\\n", you will get a backslash and the n character in your terminal. Or, you can use
so-called raw strings, where you put the character r immediately in front of the string literal, like:

echo r"\n"
echo "\\n"

Multi-line strings are also raw strings; that is, contained escape sequences are not interpreted by

91

the compiler. As the name implies, multi-line strings can extend over multiple lines of the source
text. A multi-line text starts and ends with three quotes, as demonstrated below:

echo """this is
three lines
of text"""

echo "this is\nthree lines\nof text"

Both echo() commands above generate the exact same machine code!

Comments
Comments are not a data type, yet they are important. Ordinary comments start with the hashtag
character # and extend to the end of the line. The # character itself and all following characters up
to the line end are ignored by the compiler. You can also start the comment with ##; this designates
a documentation comment. It is also ignored by the compiler but can be processed when you use
tools to generate documentation for your code. Documentation comments are only allowed in cer
tain places in the source code; often, they are inserted at the beginning of a procedure body to
explain its use. There are also multi-line comments, which start with the two characters #[and end
with]#. These forms of comments can extend over multiple lines and can be nested; that is, multi-
line comments can again contain plain or multi-line comments.

this is comment
important note for documentation
#[a longer
but useless comment
]#

Multi-line documentation comments also exist and can be nested as well.

proc even(i: int): bool =
 ##[This procedure
 returns true if the integer argument is
 even and false otherwise.
]##
 return i mod 2 == 0

You can also use the #[comment]# notation to insert comments anywhere in the source code
where a whitespace character is allowed, but this form of in-source comment is rarely used.

Other data types
There are additional predefined types such as the container types array and seq, which can contain
multiple elements of the same base type, and the tuple and object types, which can contain data of

92

different types. Nim tuples and objects are similar to C structs and are not as verbose as Java
classes. We will learn more about these types in later sections of the book.

[1] When we are using the term "size" here, this means how much space an instance of that type occupies in the RAM of the com
puter. A type of size 4 would occupy 4 bytes of the RAM of your computer.

[2] The fact that in the current Nim implementation of A. Rumpf float is identical to float64 should be seen as an implementation
detail. For other implementations, the float size may depend on OS and CPU.

[3] Well, to some degree — Inf + 1.0 is still Inf, but for Inf / Inf the result is not that obvious…

[4] We will learn all the details about modules later in the book.

[5] Here we use already the for loops, which will be introduced later in the book.

[6] Arrays are homogenous, fixed-size containers, we will learn the details later.

[7] We will explain later in this book what pointers are, so if you have no idea for what pointers are used in computer program
ming, then just ignore it for now.

[8] Well we have a backspace key on our keyboard, but generally it does not insert a backspace character but deletes the character
to the left of the cursor when we are editing text. And the return key, well, it indeed inserts a newline character, but at the same
time in our editor, the cursor moves to the next line. Most of the time, we desire a character that generates a new line when we
run our program, but not when we enter our source code.

93

Nim source code
You have already seen a few examples of simple Nim source code. The code essentially consists of a
plain text file made up of ASCII characters - that is, the ordinary characters that you can type on
your keyboard. Generally, Nim source code can also contain Unicode utf-8 characters, so instead of
using names consisting of ASCII characters for your symbols, you could just use single Unicode
characters or sequences of Unicode characters. However, this typically doesn’t make much sense as
entering Unicode isn’t easy with a keyboard. Additionally, it can only be displayed correctly on the
screen or in the terminal if the editor or terminal properly supports Unicode and all necessary
fonts are installed. This may be possible on your local computer, but what happens when someone
else edits your source code?

Starting with Nim version 1.6, we received support for Unicode operators, which could be useful for
some applications. For details, please see the Nim language manual.

Nim currently does not permit the insertion of tabular characters (tabs) in your source code, so you
must indent blocks using spaces only. Typically, we use two spaces for each indentation level. Other
quantities also work, but it’s best to stick to a consistent number.

Identifiers in Nim, as used for modules, variables, constants, procedures, user-defined types, and
other symbols, can contain lowercase and uppercase letters, digits, Unicode characters, and addi
tional underscores. However, names must not start with digits or begin or end with an underscore,
and one underscore may not immediately follow another underscore.

var
 pos2: int # OK
 leftMargin: int # OK
 next_right_margin: int # OK
 _private: int # illegal
 custom_: int # illegal
 strange__error: int # illegal

Generally, we use camel-case like leftMargin for variable names, not snake-case like left_margin.

Current Nim has the special property that identifiers are case-insensitive and that underscores are
simply ignored by the compiler. The only exception is the first letter of a name; that letter is case-
sensitive. So the names leftMargin, leftmargin, and left_margin are identical for the compiler. But
LeftMargin is different from all the others because it starts with a capital letter. This may sound a bit
strange at first but works well in practice. One advantage is that a library author can use snake_case
in their library for names, while users of the library can freely decide if they prefer camelCase. Still,
you might think this could generate confusion. In practice, it does not, it prevents confusion. Imag
ine a conventional programming language that is fully case-sensitive and does not ignore under
scores. In a larger program, we could then have names like nextIteration and next_Iteration or
keymap and keyMap. What when both names are visible in the current scope, and we type the wrong
one? The compiler may not detect it when types match, but the program may do strange things.
Nim would not allow such similar-looking names, as the compiler would regard them as identical
and would complain about a symbol redefinition.

94

You might wonder why the first letter is case-sensitive. This is to allow user-defined types to use
capital letters in their names and then write something like var window: Window. So we can declare a
variable named window of a user-defined data type named Window. That is a common practice.

The case insensitivity and the ignoring of underscores may not be the greatest invention of Nim,
but it does not really hurt. The only exception occurs when we create bindings to C libraries where
leading or trailing underscores are used, necessitating some renaming.

The only minor disadvantage of Nim’s fuzzy names arises when using tools like Grep or your edi
tor’s search functionality. You cannot be certain if a search for "KdTree" will yield all results; you
might have to try "Kd_Tree" or "KDTree" and potentially some other variants as well. To address
this issue, Nim provides a tool called nimgrep that conducts a case- and style-insensitive search.
Your editor may also support that type of search. You can enforce a consistent naming scheme by
calling the compiler with the command-line argument --styleCheck:error or --styleCheck:hint.

Languages such as C use curly braces to mark blocks, while others, such as Pascal, use
begin/end keywords for this purpose. At the same time, blocks are generally indented by tabs
or spaces to make it easier for the programmer to recognize the extent of the block. This
introduces some redundancy, which is not always helpful — block markers and indentation
ranges can contradict each other and potentially lead to strange bugs. Like Python or Haskell,
Nim does not need additional block markers; the indent level is enough to mark the block
extents for the compiler and the human programmer. This style looks clean and compact and
was used in pseudocode of textbooks for decades already. Some people still argue that this
style is less "safe", as the behavior of the code depends on invisible whitespace. However, this
argument is rather peculiar — the whitespace is always visible due to the presence of visible
characters on the right. Of course, changing the indention of the last line of a block would
affect the behavior of the code. But such a change is clearly visible. And program code con
tains many locations where changing one character breaks it. All numeric literals would suf
fer from adding a digit or deleting a digit. Consider operators like ++ or += from C — the code
may still compile after deleting the leading +, but the resulting code would be incorrect. Com
puter programming requires meticulous attention! Indeed, the use of curly braces for blocks
has some advantages; e.g. many editors can highlight such blocks well, the editor may sup
port jumping back and forth between the braces, and for really large blocks it may indeed be
simpler to discover the whole block range. However, experience has shown that marking
blocks solely with indentation works well; most people who have used this method for some
time tend to prefer it.

Whenever you convert source code from other programming languages to Nim,
you should first ensure that the original code is correctly indented. Some editors
can maintain or rectify this, or you can use external tools. If you overlook this
aspect and attempt to convert from C to Nim, removing the braces of blocks, you
might introduce errors if the initial indentation was not correct.

Blocks, scopes, visibility, locality, and shadowing
Like most other programming languages, Nim has the concept of code blocks or scopes. The bodies

95

of procedures, functions, iterators, templates, and macros as well as those of various loop con
structs or code following conditional statements, build indented blocks and create new scopes. In
this new scope, we can define variables, named constants, or types with the var, let, const and type
keywords that are local to this block. These symbols are only visible in this scope, and local vari
ables that require storage are actually created when the program executes the block and are
destroyed when the block is exited. This holds true in principle, and at least for ordinary stack-allo
cated value variables; however, things are a bit more complicated for references and pointer vari
ables. We will discuss this in more detail when we introduce references. Here, we have used the
term 'code block' to clearly distinguish it from the const, var, type, and import sections, which are
different forms of indented blocks. Remember that the compiler processes our program code from
top to bottom, so we always have to define symbols before we can actually use them. When we
define an entity in a code block, and a symbol with that name was already declared before outside
this block, then that symbol is shadowed, that is, the previous declaration becomes temporarily
invisible. Let us investigate the following small example program:

proc doSomething =
 type NumType = int
 const Seven = 7
 var a: NumType = Seven
 var b: bool = true
 if b:
 echo a, ' ', b # variables of outer scope are visible
 var a, sum: float # now outer a is shadowed
 a = 2.0
 sum = a * a + 1
 echo a, ' ', sum # local data only visible in if block

 echo a # initial int variable with value 7 becomes visible again

doSomething()

Although we haven’t officially introduced procedures as units for structuring our program code yet,
we have intentionally enclosed the above code in the body of a proc called doSomething() this time.
Actually, in real-life programs, nearly all the program code is embedded in procs. We will discuss
the peculiarity of global code later. By enclosing the program code in a procedure, we can ensure
that the two variables a and b defined in that proc are indeed stack-allocated and local to the scope
of that procedure.. The variables a and b are created on the stack when the procedure is called, that
is, when its execution starts with a statement like doSomething(). These two variables are never vis
ible in code outside this procedure, and the storage for these two variables is automatically
released when the execution of that procedure ends, in this case when the last line of the proc is
reached. In the body of the procedure, we also define a new custom type and a named constant, just
to demonstrate that it is possible. Both symbols are also local to this proc and invisible outside.

The indented code block following the if b: statement is sometimes called an "if then" block or just
if block — in that block we define two other variables called a and sum of float type, which are also
stack-allocated. If these two variables are already allocated when the proc starts its execution, or
only when the then block following the if statements is executed, is actually an implementation
detail. As the variable a of float type in the if then block has the same name as the outer variable of

96

int type, that integer variable is shadowed in the if block — the outer value gets temporarily invisi
ble as soon as the new symbol is declared. Other symbols of outer scopes remain visible. In the if
then block as well as in most other indented code blocks we could also define named constants or
custom types, these would be visible only in this block. Indented code blocks can be nested; within
one block, we can have additional indented blocks in which all declared symbols are again local
and invisible outside. The last echo() statement in our code example above is located after the if-
then block, so the initial variable a of integer type becomes visible again.

Global code
In the introductory sections of the book, we generally used program code at a global level, not
embedded in a procedure body. We did this for simplicity, as we hadn’t yet introduced procedures.
Global code is sometimes used in small scripts or for special purposes, like program initialization.
But for larger programs, most of the code is typically grouped into procs. The storage location for
variables defined in global code isn’t well-defined; it can depend on the actual Nim compiler imple
mentation and the compiler backend. The performance of global code can be worse than that of
code enclosed in procedure bodies, so when performance matters, we should put our code in procs.
One reason for the suboptimal performance of global code is that global variables are not located
on the stack but in the global BSS segment of the program, and the backend cannot optimize global
code well. For example, global variables may not be cached in CPU registers. Note that variables,
which need to exist and retain their value for the entire runtime of the program and not just for the
duration of a single procedure execution, must be defined as global. The same obviously holds for
global variables that are used in the code of different procedures, such as the stdout and stdin vari
ables of the sʏsᴛᴇᴍ module. An alternative to using global variables, when a variable in a procedure
should retain its value between different proc calls, is to attach the {.global.} pragma to a local vari
able within the proc. This way that variable is still only visible in that procedure where the vari
able is declared, but the variable is stored in the BSS segment instead of on the stack and so its
value is preserved between procedure calls.

Note that structured named constants, such as constant strings, are also stored in the BSS segment,
even when they are defined only locally within a procedure. So large structured constants can
increase the executable size, as the BSS segment is a part of the program executable.

Whitespace, punctuation, and operators
The space character, with decimal ASCII value 32, is used in Nim program code to indent code
blocks and separate different symbols from each other. Nim’s keywords are always separated from
other symbols by leading and trailing whitespace, while other symbols are most often separated by
punctuation and an additional, optional space character. Whenever the syntax allows a space, we
can also insert multiple spaces or a comment enclosed in #[]# into the source code. Tabulator char
acters are not allowed in the Nim source code, but we can use them in comments and of course in
string literals. We have already mentioned that spaces can make a difference in how operators or
function parameters are handled. In expressions like a+b or a + b the + operator is regarded as an
infix operator, but in a + -b the minus sign is regarded as a unary operator bound to b. This way,
asymmetric expressions like a +b or a <b would be invalid, as the operators are interpreted as
unary ones attached to b, and then, there is no infix operator between the two variables. A proce
dure call such as echo(1, 2) is interpreted as a call to echo() with two integer literal arguments,

97

while a call like echo (1, 2) — with a space after the proc name — is interpreted in command invo
cation syntax as a call with a tuple argument. Although it’s not uncommon in C code to always
insert a space between the function name and its parameter list, we should avoid doing so in Nim
for the reason described. We will learn more about procedure calls and the tuple data type later.

Operators
Nim uses the following punctuation characters as operators:

=, +, -, *, /, <, >, @, $, ~, &, %, |, !, ?, ^, ., :, \

These symbols can be used as single entities or in combination, and we can define our own opera
tors or redefine existing operators. All these symbols can be used as infix operators between two
arguments or as unary prefix operators. However, Nim does not support unary postfix operators,
so a notation like i++ from the C language is not possible in Nim. A few combinations of these punc
tuation characters have special meanings. We will learn more about that and how we can define
our own operators later in the book.

In Nim, these keywords are also used as operators:

and, or, not, xor, shl, shr, div, mod, in, notin, is, isnot, of, as, from.

Operators have different priorities. For example, * and / have a higher priority than + and -. In
most cases, the priority is as we would expect, with perhaps a few exceptions. If we are unsure, we
can group terms with brackets or consult the Nim language manual for details.

Since version 1.6, Nim also allows the definition and use of a few Unicode operators, but these are
still considered experimental.

Order of execution
Global program code, or code enclosed in procedures, is generally executed from top to bottom and
from left to right, unless control structures enforce a different order. To demonstrate this, we use
here a set of four different procs, which contain an echo() statement each, and return a numeric
expression. However, we have not yet formally introduced procedures, so if the code below feels
too complex, feel free to skip this section for now and return once you have read the section about
procs:

proc a(i: int): int =
 echo "a"
 i * 2

proc b(i: int): int =
 echo "b"
 i * i

98

proc c(i: int): int =
 echo "c"
 i * i * i

proc d(i: int): int =
 echo "d"
 i + 1

echo a(1); echo b(1)
echo b(2) + d(c(3)) # (2 * 2) + ((3*3*3) + 1)
echo "--"
echo a(1) < 0 and b(1) > 0
echo a(1) > 0 or b(1) > 0

It should be no real surprise that the first three echo() statements produce this output:

a
2
b
1
b
c
d
32

For the term d(c(3)), it is obvious that the inner expression c(3) has to be evaluated first before that
result can be used to call proc d().

The last two lines demonstrate the so-called short-circuit evaluation for expressions with the
Boolean and or or operators. As the expression a() and b() is always false when a() is false, in this
case, b() has not to be evaluated at all. Similarly, as the expression a() or b() is always true when
a() is true, in that case, b() does not have to be evaluated at all. So in the last two lines of the above
code, b() is never called at all, and the output is just

a
false
a
true

Note that, in Nim as in most other programming languages, the assignment operator = behaves dif
ferently compared to ordinary operators like + or *. In assignments such as let a = b + c(), obvi
ously, the right side has to be evaluated before the result can actually be assigned to variable a.

99

Control structures
Larger computer programs generally consist not only of code that is executed linearly but also of
code for conditional or repeated execution.

The most important control structures of Nim are the if statement for conditional execution, the
related case statement, and the while and for loops for repetitions. All these statements control
program execution at runtime. Nim’s when statement, which is syntactically very similar to the if
statement, is evaluated at compile-time. It can be used to adapt our program code for various oper
ating systems or to compile our code with special options, such as for debugging or testing pur
poses.

All these control structures can be nested in arbitrary ways, so we can have in one if branch other
if conditions or while loops, and in while loops again other control structures including other
loops.

If statement and if expression
The if statement with multiple optional elif branches and an optional else branch evaluates a
sequence of boolean conditions at program runtime. As soon as one condition evaluates as true, the
corresponding statement block is executed, and thereafter, the program execution continues after
the entire if construct. That is, at most one branch is executed. If none of the conditions after the if
or elif keywords evaluates to true, then the else branch is executed if it exists. A complete if state
ment consists of one if condition, an arbitrary number of elif conditions, and one optional else
part:

if condition1:
 statement1a
 statement1b
 ...
elif condition2:
 statement2a
 statement2b
 ...
elif condition3:
 statement3a
 statement3b
 ...
elif ...:
 ...
else:
 statementa
 statementb
 ...

The simplest form of an if statement is

100

if condition:
 statement

if age > 17:

 echo "You are of legal age, but remember to drink and smoke responsibly!"

Note that the branches are indented by spaces. We generally use two spaces, but other numbers
work as well. Also, note that it is elif, not elsif as in Ruby, and that there is a colon after the condi
tion. Instead of a single statement, we can use multiple ones in each branch, all on their own line
and all indented in the same way.

No, the terminating colon is not really necessary for the compiler. The compiler could deter
mine the end of the condition without it, as the following statement is indented. However, the
inclusion of a colon enhances readability, making it easier for humans to understand the
structure of the complete if statement. Therefore, the compiler currently expects the colons
and will report an error otherwise.

When there is no elif and no else part, then we can also write the conditional code directly after
the colon, like

if age > 17: echo "You may drink and smoke, but better avoid it!"

With an elif and an else branch, the example from above may look like

var age: int = 7
if age == 1:
 echo "you are really too young to drive"
elif age < 6:
 echo "you may drive a kid's car"
elif age > 17 and age < 75:
 echo "you can drive a car"
else:
 echo "drive carefully"

Note that we perform the age tests in ascending order. It would not make much sense to first test
for a condition age < 6, and later to test for age < 4, because the if statement is evaluated from top
to bottom. As soon as one condition is evaluated as true, that branch is executed, and the program
execution continues after the entire if construct. So a later test age < 4 would be useless when that
condition is already covered by a prior test age < 6.

As the various conditions of the if statement are processed from top to bottom until one condition
evaluates to true, it can be beneficial to place the most likely conditions first for optimal perfor
mance. This approach reduces the need to evaluate unlikely conditions in most cases.

101

Another strategy for larger if/elif constructs is to put the most simple and fast tests to the top when
possible.

We can also have if/else expressions that return a value like in

var speed: float = if time > 0: delta / time else: 0.0 # prevent div by zero error

In C, for a similar construct, the ternary ? operator is used.

In languages like C or Ruby, the assignment operator = is an expression that returns the assigned
value, so in C we can write code like

while (char c = getChar()) {process(c)}

In Nim, the assignment operator is not an expression with a result, but we can group multiple state
ments in round brackets separated by semicolons, and when the last statement in the bracket is an
expression, then the whole bracket has the same value. So we can use conditional terms like

while (let c = getChar(); c != '\0'):
 process(c)

If we declare a variable in this way using the var or let keyword, then that variable is only visible
in the bracket expression itself and in the following indented block.

Note that if-expressions must always return a well-defined value, so they must always contain an
else branch. A plain if, without an else, or an if/elif without an else, does not work. And as Nim is a
statically typed language, and all variables have a strictly well-defined type, the if-expression must
return the same type for all branches!

var a: int
var b: bool
a = if b: 1 elif a > 0: 7 else: 0 # OK
a = if b: 1 elif a > 0: 7 # invalid
a = if b: 1 # invalid
a = if b: 1 else: 0.0 # invalid, different types!

The when statement
The when statement is syntactically very similar to the if statement, but while all the boolean con
ditions are evaluated during the program runtime for the if statement, for the when construct all
the when/elif/else conditions have to be constant expressions, and are already evaluated at com
pile-time. In ordinary program code, the when statement is not often used. However, it is useful
when we write bindings to C libraries and low-level code. Common use cases for the when state
ment include the isMainModule condition test and testing for defined symbols, such as defined(win
dows):

102

when not defined(gcDestructors):
 echo "You may try to compile your code with option --mm:arc"
when isMainModule:
 doAllTheTests()

The value isMainModule is only true for a source code file when that file is compiled directly as the
main module, that is, when it is not indirectly compiled because it is imported by other modules.
This way, we can easily include test code in our library modules. This test code is ignored when the
module is used as a library, but it becomes active when we compile the module directly for testing.

A when defined() construct can be used to test for predefined or our own custom options. For exam
ple, we may pass the optional argument -d:gintroDebug to the compiler and test for this option
within the code of the module, like when defined(gintroDebug):

One difference between the when and the if statement is that the 'then' branches do not open a
new scope. This means variables defined there are still visible after the construct has been
processed:

when sizeof(int) == 2:
 var intSize = 2
 echo "running on a 16-bit system!"
elif sizeof(int) == 4:
 var intSize = 4
 echo "running on a 32-bit system!"
elif sizeof(int) == 8:
 var intSize = 8
 echo "running on a 64-bit system!"
else:
 echo "cannot happen!"

echo intSize # variable is visible here!

Another peculiarity of the when statement is that it can be used inside object definitions. We will
show an example of that in a later section of the book when we introduce the object data type. Just
like the if construct, when can also be used as an expression.

The case statement
The case statement is not used that often, but it can be useful when we have many similar condi
tions:

case inputChar
of 'x': deleteWord()
of 'v': pastWord()
of 'q', 'e': quitProgram()
else: echo "unknown keycode"

103

To enable optimizations, the case construct has some restrictions compared to a more flexible if/elif
statement:

The variable following the case keyword must be of an ordinal type, such as int, char, or string. A
float, however, would not work. Also, the values following each of keyword must be constant, that
is, a single constant value, multiple constant values, or a constant range like 'a' .. 'd' for the 4
first lower case letters. Of course, these constants must have a type compatible with the type of the
variable after the case keyword. A case statement must cover all possible cases, so most of the time
an else branch is necessary.

Since Nim version 1.6, the case statement can also contain optional elif branches with arbitrary
boolean conditions. This was not the case in the Wirthian languages Pascal, Modula, and Oberon. It
now makes Nim’s case construct very similar to the ordinary if/elif/else.

Unlike the similar switch statement in C, the case statement requires no break after each branch. If
a condition following the of keyword evaluates to true, the corresponding statement or sequence of
statements is executed. Afterward, the program execution resumes beyond the entire case con
struct.

The case construct can also be used as an expression, as illustrated below:

var j: int
var i: int =
 case j
 of 0 .. 3: 1
 of 4, 5: 2
 of 9: 7
 else: 0

Here, an else is necessary to cover all cases. And as you see, we can also indent the block after the
case keyword if we want.

The while loop
The while loop is used when we want to implement conditional repetitions, i.e., when we want to
check a condition and execute a block of statements only as long as the condition remains true. If
the condition is false in advance or becomes false after some repetitions, then the program execu
tion proceeds after the indented loop body block.

A basic while loop has the following structure:

while condition:
 statement1
 statementN
firstStatementAfterTheWhileLoop

var repetitions = 3

104

while repetitions > 0:
 echo "Nim is easy!"
 repetitions = repetitions - 1

The aforementioned loop would print the message three times. Like the condition in the if-clause,
the condition is terminated with a colon. Note that the condition must change during the execution
of the loop, otherwise, when the condition is true for the first iteration, it would remain true and
the loop would never terminate. We decrease the loop counter repetitions in the loop. So, at some
point, the condition will become false, the loop will terminate, and program execution will con
tinue with the first statement after the loop body. Note how we decrement the loop counter. The
right side of the assignment operator is evaluated, and once that is done, the new value is assigned
to the counter.

Two rarely used variants of a while loop exist: The loop body can contain a break or a continue
statement, each of which consists only of this single keyword. A break statement within the loop
body stops the loop’s execution immediately, and the program execution resumes after the loop
body. Alternatively, a continue statement within the loop body skips the following statements and
returns to the beginning of the loop, at which point the while condition is evaluated again.

var input = ""
while input != "quit":
 input = readLine(stdin)
 if input == "":
 continue
 if input == "exit":
 break

The aforementioned code utilizes the == and != operators. The == operator tests for equality, and !=
tests for inequality. Both operators work for most data types like integers, floats, characters, and
strings. The literal value of an empty string is written as "". In line 2, we test if the variable named
input does not have the value "quit", and in line 4, we test if that variable is empty, that is, it con
tains no text at all.

The use of break and continue disrupts the expected flow in loops, which can make understanding
loops more challenging. So we generally avoid their use, but sometimes break or continue are
really helpful. For example, they can be useful when an unexpected error occurs, perhaps due to
invalid user input.

Nim does not include a repeat loop as found in Pascal, which does the first check at the end of the
loop when it was executed already for the first time. Repeat loops are not used that much in Pascal,
and they are sort of dangerous because they check the condition after the first execution of the
body, so potentially the body is executed with invalid data for the first iteration. Later, we will see
how we can use Nim macros to extend Nim by a repeat loop that can be used as it would be part of
Nim’s core functionality.

105

The block statement
The block statement can be used to create a new indented code block, creating a new scope in the
same way that an if true: statement would:

block: # create a new scope
 var i = 7
echo i # would not compile, as the variable i is undefined

Blocks can be useful for structuring large code segments when no better ways are available, such as
splitting the code into multiple procedures. For testing purposes, blocks can be useful too, to keep
the symbols in a local scope. In fact, blocks are most useful when they are assigned names and
when we use the break statement in a while or for loop to exit a nested loop:

let names = ["Nim", "Julia", "?", "Rust"]
block check:
 for n in names:
 for c in n:
 if c notin {'a' .. 'z', 'A' .. 'Z' }:
 echo "invalid character in name"
 break check
echo "we continue"

The break check statement would immediately exit the nested loops and continue with the first
statement after the block, which is the last line in the code segment above. Using break in such a
manner might complicate understanding the code structure, but it can sometimes be very useful.

Before Nim 2.0, it was possible to use a break statement in unnamed blocks, but this generates a
warning in version 2.0 and may yield an error in future versions.

For loops and iterators
For loops can be used to easily iterate over containers, collections, ranges, and many other entities.
We have not discussed the important array and seq containers yet, but we know already the string
container. The characters of an ASCII string are numbered starting at 0, and we can access them
using the subscript operator []. So we could print the single characters of a string in this way:

var
 s = "Nim is not always that easy?"
 pos = 0
while s[pos] != '?':
 echo "-->", s[pos]
 inc(pos)

It’s clear that the pos variable introduces some complexity here — we aim to process all the charac
ters in the string sequentially, so the use of a position variable seems unnecessary. This method is

106

susceptible to errors, such as forgetting to increment the pos variable within the loop (body). So
most modern languages provide us with iterators for this purpose:

var
 s = "Nim is not always that easy?"
for ch in items(s):
 echo "-->", ch

This approach is notably shorter. The for construct might seem odd at first, but it’s a common pat
tern for writing iterations, utilized in languages like Python as well. Ruby uses something like
s.each{|ch| …} instead.

For loops can be used to iterate over containers or collections, picking each element in sequence
during this process. The variable following the for keyword is used to access or reference individ
ual elements. That variable automatically has the right type, which is the type of the elements in the
container and in each iteration, gets the value of the next element in the container, starting with
the first element in the container and stopping when there is no element left. Items() is here the
actual iterator, which allows us to access the individual characters in sequence. There’s a conven
tion in Nim, where an items() iterator is automatically called in a for loop construct when no itera
tor name is explicitly given, allowing for more concise syntax such as for ch in s: in this use case.

You may recognize that the output of the above for loop is not identical to the output of the previ
ous while loop. The while loop stops when the last character, that is '?', is reached, while the for
loop processes this last character also. That is intended for the for loop, its general purpose is to
process all the elements in containers or collections.

The above for loop does a read access to the string, that is, we get basically a copy of each charac
ter, and we can not modify the actual string in this way. When we want to modify the string, we
can use the mitems variant:

var
 s = "Nim is not always that easy?"
for ch in mitems(s):
 if ch == '?':
 ch = '!'

Here we use mitems() instead of the plain items(), where the leading 'm' signifies 'mutable'. In the
loop body, we can assign different values to the loop variable and in this way modify the container
content.

We can iterate not only over containers but also over many more entities, for example, over lines of
a file or integer ranges. We can use predefined iterators or create our own ones, and then use the
iterator in for loops. Iterators are similar to functions, but while functions return only once, itera
tors can yield results multiple times. Actually, Nim currently provides two types of itera
tors — inline iterators, which are currently the default type, and closure iterators, which are simi
lar to functions. Inline iterators create a hidden while loop whenever they are called. In this way,
they offer the highest performance, but they have some restrictions and increase the final code size

107

of the executable, much as an explicit while loop would do. Closure iterators are real entities, like
procedures, meaning we can assign them to variables. However, in the for loop, each call generates
some minimal overhead. We will learn how to create our own iterators later in the book after we
have learned all the details about procedures and functions.

108

Objects
We have worked with basic data types like numbers, characters, and strings already. Often it
makes sense to join some variables of these basic data types to more complex entities. Assume you
want to build an online store to sell computers and build a database for them. The database should
contain the most important data of each device type, like the type of CPU, RAM and SSD size, power
consumption, manufacturer, quantity available, and actual selling price.

We can create a custom object data type with fields containing the desired data for this purpose:

type
 Computer = object
 manufacturer: string
 cpu: string
 powerConsumption: float
 ram: int # GB
 ssd: int # GB
 quantity: int
 price: float

In the first line, we use the type keyword to tell the compiler that we want to define a new custom
type. Writing the type keyword on its own line begins a type section where we can declare one or
more custom data types. All type declarations in a type section must be indented. In the next line,
we write our type name, an equal sign, and the keyword object. This indicates that we want to
declare a new object type named Computer. Here, Computer is a type name; in Nim, we use the con
vention that user-defined type names start with a capital letter. In the following indented block we
specify the desired fields of this object, each line contains the name of a field and a colon followed
by the needed data type. That is similar to a plain variable declaration.

Objects in Nim are similar to structs in C. Unlike classes in Java, Nim objects contain only the
fields, sometimes also called member variables, but no procedures, functions, or methods, and no
initializers or destructors as in C++. In Nim, we keep the data objects separate from the procedures,
functions, methods, and also optional initializers and destructors that work with those data objects.

Now that we have defined our own new object type, we can declare variables of that type and store
content in its fields.

var
 computer: Computer

computer.manufacturer = "bananas"
computer.cpu = "x7"
computer.powerConsumption = 17
computer.ram = 32
computer.ssd = 1024
computer.quantity = 3
computer.price = 499.99

109

Of course, in real applications, we would fill the fields not in this way, but we would maybe read the
data from a file, from a terminal, or maybe from a graphical user interface.

It may look a bit ugly that we have to write computer. before each field when we access the fields.
Indeed, in recent Nim versions, this is not necessary; you may use the with construct instead.

import std/with
var
 computer: Computer
with computer:
 manufacturer = "bananas"
 cpu = "x7"
 powerConsumption = 17
 ram = 32
 ssd = 1024
 quantity = 3
 price = 499.99

We can use the fields like ordinary variables:

computer.quantity = computer.quantity - 1 # we sold one piece
echo computer.quantity

As mentioned earlier, the right side of the assignment operator is evaluated first, then the result is
stored in the variable on the left side. But we can also just write computer.quantity -= 1 or dec(com
puter.quantity).

Objects, like all other data types that we have already used, are value types, which means that
when an object is assigned to a new variable, all its components are copied as well. In this way,
objects behave like strings — assignment copies the content, with the entities remaining indepen
dent of each other. We will learn about reference types soon, which behave differently.

To initialize object variables, we can use the object type names as a constructor with a syntax like
Foo(field: value, …). Unspecified fields get the field type’s default values:

var
 computer1 = Computer(price: 799.99, quantity: 2)
 comp2: Computer

comp2 = computer1
comp2.price = 999.00

To initialize the variable computer1, we used the constructor syntax. In line five, we use the assign
ment operator to copy the content of variable computer1 into variable comp2, and finally, we over
write the price field in comp2. As both variables are distinct instances, the fields of variable comput
er1 are not modified this way.

110

Starting with Nim v2.0, object fields can have custom default values, instead of the binary zero. The
syntax for the defaults is the same as the assignment for ordinary variables, as shown below:

type
 Computer = object
 freeShipping: bool = true
 manufacturer = "bananas"
 quantity: int

var c1 = Computer(quantity: 12)
echo c1.manufacturer # "bananas"
c1 = default(Computer)
echo c1.freeShipping # true
var c2: Computer # no custom default values, all fields binary zero!
echo c2.freeShipping # false

Note that custom default values for object fields are only applied, when we explicitly initialize a
variable by use of an object constructor, or when we use the default() function for the initializa
tion. A plain variable declaration like var c2: Computer initializes all fields to binary zero". This
behaviour could be surprising, and perhaps it would be a good idea when the compiler gives a
warning when for objects with default field values a plain declaration like var c2: Computer is
used.

Typically, a computer store would offer many different types of computers, so it would make sense
to store all the different devices in a container like a sequence, called short seq in Nim. In the next
section, we will learn how we can do that.

111

Arrays and sequences
Sequences and arrays are homogeneous containers. They can contain multiple elements of the
same data type, while a plain variable, such as a float or an int, only contains a single value. In
some ways, we can regard objects as containers as well because objects contain multiple fields.
The same holds for tuples — tuples are a very simple, restricted form of objects and also contain
fields. But more typical container data types are the built-in arrays and sequences, or for example,
hash tables, which are provided by the Nim standard library. Arrays, sequences, and hash tables can
contain multiple elements, but all elements must have the same data type, which we call the base
type.[1] The data type of the base type is not restricted; it can even be an array or sequence type
again, allowing us to build multidimensional matrices in this way. Arrays have a fixed, predefined
size; they cannot grow or shrink during the runtime of our program. Sequences and hash tables can
grow and shrink.

Arrays and sequences appear very similar. A sequence seems even more powerful because it can
change its size, i.e., the number of elements it contains, at runtime, while an array has a fixed size.
So why do we have arrays at all? The reason is mostly efficiency and performance. An array is a
plain block of memory in the RAM of the computer, which can be accessed very fast and needs not
much care by the runtime system. Sequences require much more effort, especially when we add
elements and the sequence needs to grow. When we create sequences, we can specify how many
elements should fit in it at least, and the runtime system reserves a block of RAM of the appropriate
size. But when our estimation was too small, and we want to append or insert even more elements,
then the runtime system may have to allocate a larger block of memory first, copy the already exist
ing elements to the new location, and then release the old, now unnecessary memory block. And
this is a relatively slow operation. The reason this process may be necessary is that the initially allo
cated memory block may not be able to increase in size if the neighboring space in the RAM is
already occupied by other data. Now, let us see what we can do with arrays and sequences:

var
 a: array[8, int]
 v = 1
for el in mitems(a):
 el = v
 inc(v)
for el in mitems(a):
 el = el * el
for square in a:
 echo square

In the second line of the code above, we declare a variable named a of array type — we want to use
an array with exactly 8 elements, and each element should have the data type int. To declare a vari
able of array data type we use the array keyword followed in square brackets by the number of the
elements, and separated by a comma, the data type of the elements. We can also specify the range
of the indices explicitly by specifying a range like array[0 .. 7, int] or array[-4 .. 3, int]. The
first specification is identical to the one in the above example program, and the second one would
allow us to access array elements with index positions from -4 up to 3.[2]

112

When we declare an array instance variable, then all the contained elements get the default value
binary zero. But we can also explicitly assign initial values like a: array[8, int] = [1, 2, 3, 4, 5,
6, 7, 8]. Here the expression on the right is Nim’s array constructor. Whenever we use an array
constructor to initialize an array instance variable, then the number of elements that the construc
tor provides has to match the size of the array variable, and the element types have to match as
well. To specify the element type of an array constructor, it is often enough to specify the type of the
first element, so [1.int8, 2] is equivalent to [1.int8, 2.int8]. We can use for loops to iterate over all the
elements of an array, in a similar way as we did it for strings. The first for loop of the above pro
gram fills our array — that is, for each of the 8 storage places in the array, we fill in some well-
defined data. We use the mitems() iterator here because we want to modify the content of our
array — we fill in numbers 1 .. 8. In the next for loop, we square each storage location, and finally,
we print the content. In the last for loop, we do not modify the content, so a plain items() instead of
mitems() would work, but we have already learned that we don’t need to write the plain items() at
all in this case.

Sequences, called just seq in Nim, work very similarly to arrays, but they can grow:

var
 s: seq[int]
 v = 0
while v < 8:
 inc(v)
 add(s, v)
for el in mitems(s):
 el = el * el
for square in s:
 echo square

We start with an empty seq here and use the add() proc to append elements. After that, we can iter
ate over the seq as we did for the array.

In the same way as we access single characters of a string with the subscript operator [], we can
use that operator to access single elements of an array or a seq, as in a[myPos]. The slice operator is
available for arrays and sequences too and can be used to extract sub-ranges or to replace multiple
elements. Because arrays have a fixed length, the slice operator can only replace elements in them,
but not remove or insert ranges. The first element position is generally 0 for arrays and sequences.
Arrays can even be defined in a way that the index position starts with an arbitrary value, but that
is not used that often. Whenever you use the subscript or slice operator, you have to ensure that
you access only valid positions, that is, positions that really exist. a[8] or s[8] would be invalid in
our above example — the array has only places numbered 0 .. 7, and for the seq, we have added 8
values which now occupy positions 0 .. 7 also, position 8 in the seq is still undefined. We would get
a runtime error if we tried to access position 8 or above, as well as if we tried to access negative
positions. You might think that an assignment for a seq, such as s[s.length] = 9, is the same as
s.add(9), but only the add() operation works in this case.

Note that in some languages like Julia arrays start at position 1.[3] Nim arrays can have an arbitrary
integral start position, including negative start positions, but the start position as well as the highest
subscript position are determined in the program source code and can not change at runtime. We

113

say that arrays have fixed compile-time bounds. Sequences always start at position 0, we can spec
ify an initial size, and we can always add more elements at runtime.

Arrays and sequences allow fast access to their elements: All the elements are stored in a contiguous
memory block in RAM, and the start location of that memory block is well-known. As all the ele
ments have the same byte size, it is an easy operation to find the memory location of each element.
The compiler uses the start location of the array or seq, and adds the product of subscript index and
element byte size. The result is the memory location of the desired element, which was selected by
the index used in the subscript operator. When the array should not start at position 0, then the
compiler would have to adjust the index, by subtraction of the well-known start index. This opera
tion doesn’t take much time, but nonetheless, arrays starting at position 0 can be slightly faster. As
mentioned earlier, the compiler must perform a multiplication operation between the index posi
tion and element size — a task that involves integer multiplication and is consequently quite fast.
When the element size is a power of two, then the compiler can even optimize the multiplication by
using a simple shift operation, which can be even faster, depending on the CPU being used.

It should not be surprising that the internal structure of sequences is a bit more involved than that
of arrays. Arrays are indeed nothing more than a block of memory, generally allocated on the stack
for local data or allocated in the BSS segment for global data. Don’t worry if you do not yet have an
idea of what the stack, the heap, and a BSS segment are; we will learn about them soon. The Nim
seq data type, having a variable size, clearly requires not just a storage location for its elements, but
also a counter to track its current number of elements and another counter for its maximum capac
ity. The element counter must be updated when we add or delete elements, and when the counter
tells that there is currently no more space available for more elements, then a new block of mem
ory must be allocated, and the existing elements must be copied from the old location into the
newly allocated memory region before the old memory region can be released.[4] Due to this addi
tional effort appending elements to a seq by using the add() proc is not extremely fast. You may
wonder why we do not have to save size information for arrays. Well arrays have fixed sizes, so it is
obvious that we never have to adjust something like a size counter, simply because the size would
never change. But should we store the desired initial size of the array? In a way, yes. However, it is
a constant value. During the compilation process, the compiler can already catch some errors for
us — if we have an array as above with size 8, then the compiler would already be able to recognize
some invalid access to array elements at compile time — a[9] would surely be a compile-time error.
However, at runtime, when we execute our program, access to a non-existent index position may
occur, for example, with constructs like var i = 9; a[i] = 1, when the array is declared as var a:
array[8, int]. For catching that type of error, the compiler has to store the fixed array size some
where and check against that value when an array access by using the subscript operator with a
non-constant argument occurs, as the a[i] above. One related remark: Accessing array elements is
as fast as ordinary variable access when we use a constant value as an index; that is, a constant lit
eral or a named constant. The reason for this is, that when the index is a constant, then the com
piler just knows the exact position of that array element in memory, just as it knows the address of
plain variables, so there is no need for address calculations at runtime. Indeed, to access an array
element at a specific constant index position, the compiler only needs to add a constant value to the
current stack pointer, given that arrays are stored on the stack. To access a constant position in a
seq, the compiler would have to add a constant to the base address of the memory block that con
tains the seq data.

 Typically, if we need a container data type and its size is known at compile time,

114

we use an array instead of a seq. This is because a seq has some minimal overhead
and the compiler is better at detecting out-of-range access for arrays than for seqs.
But there is one exception: Array instances declared inside of procedures and
functions are stack-allocated, which ensures optimal performance for the alloca
tion. However, we must remember that the stack size of a program is an OS-depen
dent constant and is generally not very large by default. On Linux, the default
stack size is often only 8 MB, so it is clear that we cannot use arrays that are larger.
We would use a seq in that case. Indeed, Linux users can use the ulimit command
to increase the maximum stack size, but this is generally not recommended. Typi
cally, very large stacks are not needed, and a restricted stack makes it easier for
the OS to kill a program that does unlimited recursion due to a bug.

We said that appending elements to sequences is not extremely fast — indeed, it is several times
slower than accessing an array element by its index using the subscript operator. So, when we
know that our seq will need to contain at least a certain number of elements, it can be more perfor
mance-efficient to allocate the seq with this size from the beginning and then fill in the content
using the subscript operator, rather than appending all the elements one by one. Here is one exam
ple:

var s: seq[int] = newSeq[int](8)
var i: int
while i < 8:
 s[i] = i * i
 inc(i)

We use the newSeq() procedure to initialize the sequence. The content of the square brackets
instructs the newSeq() proc to create a sequence with a base type of int, and the number 8 as an
argument indicates that the newly created sequence should contain 8 elements, each with the
default value of 0. This procedure is what is known as a generic proc, and it requires additional
information, specifically, the data type of the elements. Don’t confuse the square brackets in the
newSeq[int]() call with the subscript operator a[i] used for array access, as they are completely
unrelated. Note that the initialization of the seq above does not restrict its use in any way, we can
still use it like an uninitialized seq, that is we can use the add() operator to add more elements, we
can insert or delete elements, and all that.

Deleting elements from an array or a sequence can be very slow, particularly when we use the
naive approach of moving all the elements located after the element that should be removed one
position forward.[5]

This would maintain the order in the container, so sometimes this is the only solution, but of
course, moving all the entries is expensive for large containers. Nim’s standard library provides the
delete() function for this order maintaining delete operation. A much faster way to delete an entry
in a seq or array is to remove the last entry and replace the one that should be deleted with that last
entry. This operation moves the last entry to replace the one that should be deleted, so the order of
elements is not maintained. Nim’s standard library provides the del() function for this faster, but
order-changing delete operation. Naturally, we should use del() when the order is not important.
The delete() and del() functions are actually only available for sequences, as arrays have a fixed

115

size — but in principle, we could do similar operations with arrays as well; we just have to store the
actual used size somewhere. [6]

In the section about strings, we mentioned that strings have value semantics. In other
words, an assignment like str1 = str2 creates a copy of str2, making str1 and str2 fully inde
pendent entities. As a result, modifying one does not change the content of the other. arrays
and sequences behave in the same way; both have value semantics too. Indeed, arrays are
true value types in Nim, as they live on the stack in the same way that plain variables like
integers, floats, or characters do. Sequences have a dynamic data buffer, which is allocated
on the heap, so it would be possible that an assignment like seq1 = seq2 would not copy the
data buffer but reuse the old one. In that case, both sequences would be not independent,
seq2 would be an alias for seq1. This is referred to as reference semantics, and some lan
guages, such as Ruby, behave in this way. But in Nim, arrays, strings and sequences have
value semantics; an assignment creates an independent copy. We will learn more details
about reference semantics and the use of the stack or heap to store data soon when we dis
cuss references to objects.

Some details
Let us investigate at the end of this section some internal details about arrays and sequences. Begin
ners who are not yet familiar with the concept of pointers should probably skip this subsection and
perhaps come back later. We could consult the Nim language manual or the compiler’s source code
to learn more details about arrays and sequences. Or we can write some code to test properties and
behavior. Let us start investigating an array:

proc main =
 var a: array[4, uint64]
 echo sizeof(a)
 a[0] = 7
 echo a[0]
 echo cast[int](addr a)
 echo cast[int](addr a[0])

 var a2 = a
 a[0] = 3
 echo a2[0]

main()

When we run this program, we get this output:

32
7
140734216410384
140734216410384

116

7

The size of the entire array is 32 bytes, as we have 4 elements, each of which is 8 bytes in size. And
the address of the array itself as well as the address of its first element are identical. Remember that
the actual address values will differ with each run of our program and will be entirely different on
different computers, because the OS randomly chooses the free memory area in which to run our
program. This result is expected as the array is a plain block of memory stored on the stack. Indeed,
the array follows copy semantics. When we create a copy called a2 and later modify a, the content of
a2 remains unchanged. That’s not really surprising, so let’s investigate a sequence:

proc main =
 var dummy: int
 var s: seq[int64]
 echo sizeof(seq)
 echo sizeof(s)
 s.add(7)
 echo s[0]
 echo cast[int](addr dummy)
 echo cast[int](addr s)
 echo cast[int](addr s[0])

 var s2 = s
 s[0] = 3
 echo s2[0]

main()

When we run the above code, we get:

8
8
7
140732171249104
140732171249112
140463681433696
7

The first two lines of the output might confuse us, as a size of only 8 bytes could indicate a plain
pointer value on a 64-bit system. Indeed, the sequence is not a large object that contains size and
capacity fields, but only a tiny object that contains a single pointer to the data storage of that
sequence. We know that it is not a plain pointer or ref because we cannot assign nil to sequences
or test them for nil. (But an object which contains only a pointer is basically identical to a plain
pointer, as Nim objects have no overhead as long as we do not use inheritance and when no
padding to word size is needed for tiny fields like int8.) Capacity and length are stored also in the
memory block that is allocated for the elements, as long as the sequence is not empty. Thus, empty
sequences don’t consume much memory even when we have many of them, such as arrays or
sequences of sequences (matrices). We use the dummy int variable in the code above as we know

117

that plain ints are stored on the stack, and when we compare the addresses of our dummy variable
and our sequence, then we see that the addresses indicate close neighborhoods, so the seq object is
also stored on the stack. But the address of s[0] is very different, indicating that the data buffer is
stored in a different memory region, which is the heap. If we continuously added elements to the
seq, the address s[0] would eventually change, while the address of s would always remain the
same. That is because the capacity of the data buffer would become exhausted at some point and a
new data buffer with a different address would be used. Finally, we observe again that the
sequence follows copy semantics, as the content of the copy s2 remains unchanged when we mod
ify the original sequence s. We could try to discover some more details of the internals of Nim’s
sequences, i.e. we could try to detect where the capacity and size are stored. However, these are
internal details that might not necessarily interest us, as they could change with new compiler ver
sions or different compilers.

However, if you still have doubts about what we have explained, let’s delve one layer deeper. We
strongly believe that a seq needs a length and a capacity field. And we assume that its data type
should be int. We said that both fields should be adjacent to the buffer of the seq elements, which
means at the start or at the end. Obviously, we can not access the end as long as we do not know the
capacity, so the capacity field should be at the start, and then the length field also. We may find out
which one is which by observing the content when the seq grows. So let us write some code:

proc main =
 var
 s: seq[int64] = newSeqOfCap[int64](4)
 s2: seq[int64]
 p: ptr int

 var h = cast[ptr int](addr s2) # prove that an uninitialized seq is indeed a pointer
with nil (0) value
 echo cast[int](h) # address on stack
 echo h[] # value (0)
 echo ""

 for i in 0 .. 8:
 s.add(i)
 echo cast[int](addr s[0])
 p = cast[ptr int](cast[int](addr s[0]) - 8) # capacity
 echo p[]
 p = cast[ptr int](cast[int](addr s[0]) - 16) # length
 echo p[]

main()

The output when we run the program is:

140725732630192
0

140251431497824

118

4
1
140251431497824
4
2
140251431497824
4
3
140251431497824
4
4
140251431506016
8
5
140251431506016
8
6
140251431506016
8
7
140251431506016
8
8
140251431510112
16
9

Don’t worry if you do not understand the program and its output yet. You will better understand it
when you have read the sections about references, pointers, and memory management. The first
two output lines show us that an uninitialized seq is just a pointer pointing to nil. And the remain
ing output lines show us the address of the first seq element, the capacity, and the length of the seq
whenever we add an element. We started with a seq with an initial capacity of 4, so address and
capacity are constant while we add the first 4 elements. Then the capacity of the allocated buffer is
exhausted. A new buffer with a different address and doubled capacity is allocated, the already
contained elements are silently copied to the start of the new buffer, and so on.

Multidimensional arrays and sequences
Nim does not support multidimensional arrays and sequences (also called matrices or tensors) as
default built-in data types. However, we can create ordinary one-dimensional arrays and
sequences, and each container element can be made an array or sequence again. For a two-dimen
sional matrix, we would then access an element with two indices like m[i][j]. To simplify element
access, we can define a template for ourselves to just write m[i, j] instead. We can extend this to
more than two dimensions. If you require matrices and tensors, you should also consider the use of
external libraries, such as Arraymancer. Arraymancer is optimized for performance and also sup
ports parallel operations like parallel matrix multiplication. In this section, we will present a few
simple use cases for creating two-dimensional matrices and accessing their elements. This should
be enough to get you started.

119

First, let’s create a chess board:

const
 Rows = 8
 Cols = 8

type
 Fig = int8
 Col = array[Rows, Fig]
 Board = array[Cols, Col]

var b: Board

const
 a = 0
 rook = 5 # whatever makes sense

b[a][0] = rook
echo b[a][0] # 5

with user-defined templates we can simplify the index notation
template `[]`(b: Board; i, j: int): int8 =
 b[i][j]

template `[]=`(b: var Board; i, j: int; v: int8) =
 b[i][j] = v

b[a, 0] = rook
echo b[a, 0] # 5

Now, let’s investigate the case where one or both dimensions of the matrix can grow during pro
gram runtime, so we make those dimensions a seq instead of an array.

type
 T1 = array[4, seq[int]]
 T2 = seq[array[2, int]]
 T3 = seq[seq[int]]

var t1: T1
t1[0] = @[1, 2, 3]
t1[1].add(7)
echo t1[0][0] # 1
echo t1[1][0] # 7

var t2: T2
t2.add([1, 2])
echo t2[0] # [1, 2]

var t2x = newSeq[array[2, int]](10) # pre-allocate 10 rows

120

t2x[7] = [5, 6]
echo t2x[7] # [5, 6]

var t3: T3
t3.add(@[1, 2, 3])
t3.add(newSeq[int](1))
t3[1][0] = 19
for row in t3:
 echo row # @[1, 2, 3], @[19]

If both dimensions are dynamic, you can also use the newSeqWith() template from the sᴇǫᴜᴛɪʟs
module. We will cite the example of that module:

import std/sequtils
Creates a seq containing 5 bool seqs, each of length of 3.
var seq2D = newSeqWith(5, newSeq[bool](3))
assert seq2D.len == 5
assert seq2D[0].len == 3
assert seq2D[4][2] == false

Creates a seq with random numbers
import std/random
var seqRand = newSeqWith(20, rand(1.0))
assert seqRand[0] != seqRand[1]

Using seq/array types to create a matrix makes a lot of sense when the matrix is densely populated.
For sparse matrices, using a hash table instead may save memory.

When iterating over matrices, keep in mind that for memory accesses such as m[i, j] and m[i, j +
1], the RAM is accessed sequentially with good cache support. However, when the first index
changes, we access memory regions that are far apart, implying inadequate cache support. We
should keep this in mind, as it can significantly impact performance. Sometimes we can optimize
loops for matrix access by altering our iteration method - either by rows or by columns.

[1] The base types can be sum types; we will discuss them later.

[2] It can be difficult to remember if we have to write [8, int] or [int, 8]. It may help to remember that for plain variables the data
type comes last also like in var i: int.

[3] A start index of 1 may appear to be more natural, some textbooks use start indices of 1, and indeed one advantage of start index
1 is, that in his case, the length and the highest position index of the container are identical. But for systems programming lan
guages like C, it is a common practice to start at zero.

[4] Well with some luck the RAM area after the currently used memory block is still unused. For this case, the OS may offer func
tions like realloc() to just increase our memory block size, so we can avoid the copying of the contained data.

[5] Actually, we cannot really delete elements from an array, as it has a fixed size — but of course, we can just ignore elements at
the end of the array.

[6] In some special cases, it can be useful to just overwrite entries with special marker values, instead of actually deleting them.
That operation is fast, the order is maintained, and for operations like data output, we can just ignore the marker entries. But this
is really only a good solution in special cases, maybe just using a different container type like a list or hash table is a preferable
solution.

121

Slices
Nim slices are objects of type Slice with two fields, a lower bound (a) and an upper bound (b). The
sʏsᴛᴇᴍ module also defines the HSlice object, called a heterogeneous slice, for which the lower and
upper bound can have different data types:

type
 HSlice*[T, U] = object ## "Heterogeneous" slice type.
 a*: T ## The lower bound (inclusive).
 b*: U ## The upper bound (inclusive).
 Slice*[T] = HSlice[T, T] ## An alias for `HSlice[T, T]`.

As the Slice and HSlice objects are not built-in types, their names start with capital letters. Slices
are not used that often directly, but mostly indirectly with the .. range operator, e.g. to access sub-
ranges of strings and other containers.

One example of its direct use from the sʏsᴛᴇᴍ module is

proc contains*[U, V, W](s: HSlice[U, V], value: W): bool {.noSideEffect, inline.} =
 result = s.a <= value and value <= s.b

Slices are used by functions of the standard library or by user-defined functions to access sub-
ranges of strings, arrays, and sequences. Typically, we do not use an explicit Slice object, but we
create the Slice by use of the infix .. operator, which takes two integers and returns a Slice with
these bounds:

Applied to container data types, slices look syntactically like sub-ranges:

var m = "Nim programming is difficult."
m[19 .. 28] = "not easy."
echo m
echo "Indeed " & m[0 .. 18] & "is much fun!"
var s = HSlice[int, int](a: 0, b: 18)
echo "Indeed " & m[s] & "is much fun!" # the same as line four

In line two, we use the slice to replace the sub-string "is difficult.", which starts at position 19, with
another string. Note that the replacement can be a longer or a shorter string, that is, the slice sup
ports not only overwriting characters but also inserting or deleting operations. In line two, the
actual Slice object is constructed by the .. operator and the two integer bounds. In line four, we
use the slice to access a sub-string and create a new string from it. As we learned earlier in the
Strings section already, we can use the ^ operator to access elements counted from the end of the
container, so we could have also written line two as m[19 .. ^1] = "not easy.". The last two lines in
the above example show that we could have instead used a real HSlice object to access the sub-
string.

Slices can be used in a similar way for arrays, strings, and sequences. But we have to remember

122

that Slices are only objects with a lower and an upper bound, so there must always be a procedure
that accepts the container and the Slice as arguments to do the real work.

When we are concerned with achieving the utmost performance, we have to be a bit careful with
Slices as their use can generate copies. Consider this example:

type
 O = object
 i: int

proc main =
 var
 s = newSeq[O](1000000)
 for i in 0 .. (1000000 - 1):
 s[i] = O(i: i)

 var sum = 0
 for x in s[1 .. ^1]:
 sum += x.i

main()

Here, we use the slice construction operator .. to exclude the first element from our summing
operation. Unfortunately, when we use the slice operation in this way, the Nim compiler may create
a copy of our sequence, which increases the run-time and memory consumption. At least for Nim
versions up to 1.6, this was the case. Newer versions may use view types instead to avoid the copy.
We may try to use the new toOpenArray() expression and attempt a construct like

 for x in items(s.toOpenArray(1, s.high)):

but that currently does not compile.

One current option is to create a custom iterator like:

iterator span*[T](a: openArray[T]; j, k: Natural): T {.inline.} =
 assert k < a.len
 var i: int = j
 while i <= k:
 yield a[i]
 inc(i)

and use

for x in s.span(1, s.high):

Alternatively, we may perform the summing in a procedure and pass that proc an openArray cre

123

ated with toOpenArray(), as shown below:

proc sum(x: openArray[O]): int =
 for el in x:
 inc(result, el.i)

echo sum(s.toOpenArray(1, s.high))

But this is a work in progress, so the situation may improve. See:

+ https://forum.nim-lang.org/t/4823

+ https://forum.nim-lang.org/t/4582#28715

124

https://forum.nim-lang.org/t/4823
https://forum.nim-lang.org/t/4582#28715

Value objects and references
We have already used different types of variables — integers, floats, characters, the custom Com
puter object, and some more. We said that variables are named memory regions or storage loca
tions where the content of our variables is stored. These kinds of variables are sometimes called
value types — to distinguish them from pointers and references.

Value types always imply copies when we do an assignment:

var i, j: int
i = 7
j = i
i = 3
echo i, j

Here, we have three assignments: first, we assign the integer literal 7 to the variable i; next, we
assign the content of variable i to variable j; finally, we overwrite the old content of variable i with
the new literal value 3. The output of the echo() statement should be 3 and 7 because, in line 3, we
copy the content of variable i, which is currently the value 7, into variable j. The new assignment
in line 4 in no way touches the content of variable j.

In section Objects we saw that the fields of object types like our Computer data type behave in the
same way — assignments copy the content. The tuple data type, which has some similarities to
objects, and which we will introduce later in the book, behaves the same. All these data types are
stack-allocated, and we say that the data types have value or copy semantics. Even strings and
sequences, which actually use a heap-allocated data buffer, behave in the same way in Nim.

Whenever possible, we should use this simple form of variables, as they are fast and easy to use.[1]

Perhaps that is not too surprising for you, but if we had references instead of plain variables, the
situation would be different, as we will see soon. Actually, some other programming languages use
reference semantics for entities like strings by default, for example in Ruby, an assignment of a
string variable to another variable does not copy the content, so that both variables still use the
same data buffer — when we then modify one variable, the content of the other changes too.

However, there are situations where we need some sort of indirection, and that’s when references
and pointers come into play. For example, when the data entities depend in some form on each
other, the elements may build linked lists, trees, or other structures. The entities may have some
neighborhood relation, also called some many-to-one relation.

Indeed, value objects and references occur in real life also:

Imagine you have baked a cake for your family, and you know that your friendly neighbor loves
cakes too. As you have still a lot of all the necessary ingredients and because the oven is still hot,
you make one more identical cake to give it later to your neighbor. We can think of the cake as a
value type, and your second cake can be considered a copy. When you give the copy to your neigh
bor, you still have your own, and when either you or the neighbor eats the cake, the other one still
exists.

125

Now imagine that you know a good car repair shop. You can give the telephone number or location
of that car repair shop to your neighbor, so he can use that shop too. So you gave him a reference to
the shop, but you gave him not a copy. You can also give some of your other friends a reference to
that shop, which requires nearly no effort for you, while baking a cake for all of them would
require significant effort. But there is some danger with references: When one of your friends gets
angry and burns down the car repair shop, then you and all your other friends have a serious prob
lem.

You can regard the names of persons as some sort of reference too. Imagine you have a list with the
names of all the people you intend to invite to your birthday party and another list with the names
of people who owe you money. Some names may appear on both lists, indicating that they refer to
the same person.

In computers, dynamic storage, called RAM, consists of consecutive, numbered storage locations,
called words. Each individual word has its address, which is a number typically starting at zero and
extending to a value, which is defined by the amount of memory available on your computer.[2]

These addresses can be used to access the storage locations, that is, to store a value at that address,
or to read the content again. Reading generally does not modify the content, you can read it many
times and will always get the same value. When you write another value to that storage location,
then the old content gets overwritten, and further reads will give you the new value.

Basically, for all the data that you use in your program, you need its address in the RAM in some
form. Without the address, you cannot access it. But what about all the plain value object variables
we have used before? We have never used addresses. That is true — we used only names to access
our variables, and the compiler mapped our chosen name to the actual address of the variables in
memory whenever we accessed the variable. For most simple cases, this is the best way to access
variables. Now, let us assume we have such value object type of variable declared in our program,
can we access it without using its name? When we have declared it, it should reside somewhere in
the RAM when the program is executed. One way to access the content of the variable is by first
determining its address from its name, which then allows us to access it either by name or by its
memory location. Nim has the addr() function for this purpose, we give it the name of our variable
as an argument and get its address. But this is rarely useful — if we can already access it by name,
why should we then use its address to access it? One of these rare cases is when we want to call a C
function and pass our variable, and that C function has an address parameter. Now, let us assume
that we do not want to access our variable by name and that we do not know its address. Can we
still access it? Well, we can search the whole RAM for the desired content. In practice, we would
never do that, as it is stupid and would take very long, but we could do it. But how can we detect
our variable? How can we be sure that it is indeed ours? Generally, we cannot. Even if we knew the
value stored in that variable, we would only know what bit pattern it should have. Consequently,
for most words of the RAM with a different bit pattern, we could say for sure that it cannot be our
variable. However, whenever we find the expected bit pattern, it could just be a coincidence, as
there could be many more words in RAM with that content. In some way, it is as if you would
search for a person, and you know that the person lives on a long road with numbered houses. If
you only know that the person wears brown shoes, but you do not know the number of the house
nor the name of the person and no other unique property of that person, then you do have not
much luck.

[1] See https://nim-lang.org/blog/2021/11/15/zen-of-nim.html, section "Value based datatypes"

[2] For technical reasons, the valid memory addresses typically do not start at location zero, and the usable address range may

126

https://nim-lang.org/blog/2021/11/15/zen-of-nim.html

haves holes. But these details are not important for our discussion.

127

References and pointers

Introduction to pointers
In Nim, references are some form of smart or managed pointers. We will learn more about refer
ences later. The plain pointer data type is nothing more than a memory address. It is similar to an
(unsigned) integer number. We say that a pointer points to an entity when the pointer contains the
memory address of that entity.

Besides the pointer data type, which is just a RAM address, we also have the ptr entity. Ptr is not a
datatype on its own, it is always used in conjunction with another data type:

var
 p: pointer
 ip: ptr int

Here the variable p is of type pointer, we could use it to point to some arbitrary memory address.
The variable ip is of the type ptr int, which indicates that it should only point to memory addresses
where a variable of data type int resides. So a ptr is a pointer that is bound to a specific data type.
Generally, we speak only about pointers. Whether we are referring to an untyped pointer or a
typed ptr is typically clear from the context.

When we only declare pointers but do not assign a value, then the pointers have the value nil,
which indicates that they are regarded to point to nothing. Exactly speaking, a pointer can never
point to anything in the same way as an integer variable can not contain any number. Just as an
integer variable always contains a bit pattern, a pointer also always contains a bit pattern. But we
are free to define a special pattern as nil, and whenever a pointer has this special value, then we
know that it does not really point to something useful. In C instead of nil, NULL was chosen for the
same purpose. In practice, nil and NULL are typically mapped to 0, that is, a word with all bits
cleared. However, this is more or less an arbitrary decision.

So how can we give our pointers above a useful value?

One possibility is to use Nim’s addr() function, which provides us with the memory address of each
ordinary variable.

var
 number: int = 7
 p: pointer
 ip: ptr int
echo cast[int](p)
echo cast[int](ip)
p = addr(number)
ip = addr(number)
echo cast[int](p)

128

echo cast[int](ip)

First, we declare an ordinary integer variable called number which will reside somewhere in mem
ory when we execute the program, and then we use the addr() function to assign the address of that
variable to p and ip. The addr() function is a low-level function provided by the compiler. It can be
used to determine the memory address of variables and some other entities known to the com
piler.[1] We used the echo() proc to show us the numeric decimal value of the addresses in the termi
nal. Since it typically doesn’t make much sense to print addresses, echo() would refuse to do so.
Therefore, we have used the construct cast[int](someValue) to instruct echo() to regard our point
ers as plain integers and print them. That operation is called casting. We should mostly avoid it
because it destroys type safety, but for learning purposes, it’s acceptable to use it. We will learn
more about casts and related type conversions later.

The first two echo statements should print the decimal value 0, as the pointers initially have the
default value nil.

The echo() functions in the last two lines should print a value different from 0, as we have assigned
the valid address of an ordinary variable that resides in the RAM when the program is executed.
Both outputs should be identical, as we have assigned addr(number) to each of the pointers.

An interesting fact, perhaps, is that when you run the program multiple times, the outputs of the
last two echo() statements print different values. But that is not really surprising — whenever you
launch the program, then for our variable number, a storage location in RAM is reserved. That loca
tion can vary with each new program execution. Just like on your next holiday at the same hotel,
you might get a different room. So when we have the pointer ip pointing to a valid address, can we
recover the content of that memory region? Sure, we use the dereference operator [] for that pur
pose. Whenever we have a typed pointer x we can use x[] to get the content of the memory location
where the pointer is pointing to. Note that the operator [] is not really related to the subscript oper
ator [pos] that we used earlier for array, seq, and string access. Nim uses ASCII characters for its
operators, and that set is not very large. And maybe it would even be confusing when we would
have a different symbol for each operator. We can consider [] as some form of content access oper
ator — mystring[pos] gives us the character at that position, and ip[] gives us the content of the
memory location where ip points to.

var
 number: int = 7
 ip: ptr int
echo cast[int](ip)
ip = addr(number)
echo cast[int](ip)
echo ip[]

What do you expect the output of the last echo() statement to be? Note that for the last echo() state
ment we do not need a cast, as ip[] has a well-defined type: ip has type ptr int, so ip[] is of well-
defined type int, and echo() can print the content.

Now, let us investigate how we can use pointers to modify the content of variables:

129

var
 number: int = 7
 ip: ptr int
ip = addr(number)
echo ip[]
ip[] = 3
echo ip[]
echo number

What do you expect for the output of the last echo() statement? Well, remember, ip points to the
location where the variable number is stored in RAM. So echo ip[] gave us the content of the number.
Now ip[] = 3 is an assignment, and the right side of the assignment operator is the literal number
3, which is a value type. Earlier we said that for value types an assignment is a copy operation, the
right side of the assignment operator is copied into the variable on the left side. Now ip[] stands for
exactly the same content as the variable number, so assigning to ip[] is the same as assigning to num
ber.

Pointer arithmetic
In low-level programming languages, pointer arithmetic can be useful. For example, old C code
often iterates with pointer arithmetic over arrays using constructs such as sum += *(myIntPtr++).
This was done to maximize performance. Modern C compilers generally understand statements like
sum += el[i]; i++ and generate very efficient assembly instructions for them. Therefore, pointer
arithmetic is not as necessary for C as it once was.

Nim does not provide math operations for pointers directly, but we can always cast pointers to inte
gers and do arbitrary math. And of course, we could define our own operators for that purpose, but
typically we should avoid that, as it is dangerous, error-prone, and generally not necessary. As an
example, let us sum up some array elements:

proc main =
 var
 a: array[8, int] = [0, 1, 2, 3, 4, 5, 6, 7]
 sum = 0
 var p: ptr int = addr(a[0])
 for i in a.low .. a.high:
 echo p[]
 sum += p[]
 echo cast[int](p)
 var h = cast[int](p); h += sizeof(a[0]); p = cast[ptr int](h)
 #cast[var int](p) += sizeof(a[0]) # this compiles but does not work currently

 echo sum
 echo typeof(sizeof(a[0]))

main()

130

When we do pointer arithmetic or similar math to calculate the address of variables in the com
puter memory, then memory addresses are used like integer numbers, and so it makes some sense
that Nim’s integers have the same byte size as pointers. Note that for arrays, addr(a[0]) is identical
to addr(a), because an array is just a memory block, and the address of the block is identical to the
address of the first element. Actually, in the general case, we should have used addr(a[a.low])
instead of addr(a[0]), since array indices don’t necessarily have to start at position zero. For
sequences and strings, addr(s[0]) is not identical to addr(a), as sequences and strings are objects,
that contain not only the data buffer but also other data like the capacity. When we have to pass the
data buffer of strings or sequences to C functions, we typically pass addr(s[0]), or in the case of
strings, we may pass s.cstring.

References:

• https://github.com/kaushalmodi/ptr_math

Allocating objects
In the previous section, we learned the basics of pointers. We used the addr() operator to initialize
the pointer by assigning the address of an existing entity. However, this approach isn’t commonly
used in practice and can be somewhat risky, as it’s not always guaranteed that the variable we
apply addr() to will persist for the lifetime of our pointer. As a result, our pointer might eventually
point to a memory location that’s already been freed or is now occupied by a completely different
object. For this reason, the use of addr() is generally reserved for experienced programmers who
have a firm understanding of its implications. Typically, addr() is unnecessary except in instances
of low-level code, such as when interfacing with external libraries written in C. Instead of using
addr() to assign a valid address to pointers, procedures such as alloc() or create() are often
employed to reserve a block of memory:

var ip: ptr int
ip = create(int)
ip[] = 13
echo ip[] * 3
var ip2: ptr int
ip2 = ip
echo ip2[] * 3
dealloc(ip)

Here, the procedure create() is used to reserve a block of memory. The int parameter ensures that
the block has the size of an integer value. After ip has a valid value, we can store a value in that
memory location and read it again. Note that multiple pointers can point to the same memory loca
tion: We declared one more int ptr called ip2. However, for that pointer, we do not allocate a new
block; instead, we assign the old block that we allocated for ip to ip2. Now both pointers point to
the same object, the int value 13. We may call ip2 an alias, as it is a different way to access the same
entity.

When we use alloc() or create() to allocate memory blocks, we have to deallocate them when we no
longer need them. Otherwise, those memory blocks couldn’t be reused. If we continuously allocated
memory blocks and never deallocated, or freed them, at some point all memory would be occu

131

https://github.com/kaushalmodi/ptr_math

pied — not only for our own program but for all programs currently running on the same com
puter. We would have to terminate our program - when a program is terminated, all resources are
automatically freed by the OS.

The use of procedure pairs like alloc() and dealloc() is common practice in low-level programming
languages like C, but it is inconvenient and dangerous: We can forget to call dealloc() and waste
resources, or we may even deallocate memory blocks, but still use it by our pointers. The latter
would at some point in time crash our program, as we would use memory blocks that are already
released and may now be reused for other variables — from our own program or from other pro
grams.[2] Note that in the source code above, there is only one single dealloc() call. The reason for
that is we only allocated one single memory block in a single create() call; ip2 is merely another
pointer that points to that block. If we had used an additional dealloc(ip2) call, then that would be a
so-called double-free error.

As you can see, using pointers is inconvenient and dangerous. However, there are situations where
plain value type variables do not suffice. The solution of many higher-level programming languages
to this problem is a Garbage-Collector (GC). The GC does the dangerous and inconvenient task of
deallocating unused memory blocks for us automatically.

To distinguish the GC-managed "pointers" clearly from the manually managed ones, we call them in
Nim references, in some other languages they are called traced pointers. References are always
typed like ptr, there is no equivalent to the untyped pointer type for references.

For references, we still have to allocate the memory ourselves, before we can use the references.
When we are done using them, the GC automatically frees the corresponding memory block. A typi
cal scenario is that we use references in a procedure or in an otherwise limited block of code: We
declare the reference in that code block, allocate and use it. When we exit the code block, the GC
automatically frees the allocated memory. You might think that the fact that we still have to allocate
the memory for our references ourselves is a concern, as we could forget that step. Well, it is not
that dangerous; if we forget the allocation step, we would use a reference with the value nil, which
would immediately result in a runtime error. So we would notice the problem immediately. How
ever, other pointer errors, such as missing de-allocation or use-after-free, are less obvious and more
dangerous. In languages like C tools like Valgrind are used to check for errors like "use after free".
Valgrind is a very helpful tool, but it can not find all errors that may occur, and its reports can be
very verbose. We may use Valgrind as well when we compile our Nim program with --mm:arc and
-d:useMalloc — this can be used to ensure that our program really works perfectly, maybe when we
have to use C libraries, and it may help us find the cause for bugs.

With references, we can rewrite our previous example code as follows:

var ip: ref int
new(ip)
echo ip[] # zero
ip[] = 13
echo ip[] * 3
var ip2: ref int
ip2 = ip
echo ip2[] * 3

132

We have replaced ptr with ref, and instead of alloc() or create(), we are using the new() proc. This
procedure takes an uninitialized ref as a parameter and allocates a managed memory block for it.
After the new() call, ip refers to a well-defined, managed memory block that can store an integer
value. The content of that memory block is cleared initially, so echo ip[] would give zero. Again, we
can create another reference, ip2, and assign to it the value of the other. As a result, both now refer
to the same memory block. The advantage here is that we don’t have to worry about deallocating
that block; the GC will handle it when appropriate.

To verify that in the example code above, both references really refer to the same object in mem
ory, we could add two more lines of code:

ip2[] = 7
echo ip[]
echo ip2[]

Here, we are using the reference ip2 to assign to the memory block the literal value 7. After that
assignment, both echo() statements would display that new content.

Using references and pointers to store basic data types like integers isn’t very common. In most
cases, we work with larger objects and establish relationships between them. We will try that in
the next section.

References to objects
You might still wonder what references are really useful for — they seem to be only a more compli
cated version of plain value type variables.

Now, let us assume we want to create a list of things or persons, maybe a list of our previously used
Computer data type, or perhaps a list of persons we will invite to our next party. We will create the
party list for now, as the Computer data type we used before has already many fields, and filling all
the fields would be some effort, so let us use a new Friend data type which should store only the
friend’s name for the beginning — we may add more fields later when necessary. So, we might have

type
 Friend = object
 name: string

With that declaration, we could declare a few Friend variables like this:

var harry, clint, eastwood: Friend

But that is not what we want. We would need a list of all our friends that we would like to invite to
our party, we would want to add friends to the list, and potentially, we might also want to delete
friends. You may think we could use Nim’s sequence data type for that, and you are right. But let us
assume we could not use that predefined Nim data type for some reason. Then we could create a
list of linked references to Person.

133

type
 Friend = ref object
 name: string
 next: Friend

Now our Friend data type is a reference to an object, and the object itself has an additional next
field, which is again of type Friend.

This is a sort of recursion. If this seems too strange, imagine you have some numbered paper cards,
each with two fields: one labeled 'name' and another labeled 'next'. In the 'name' field, you can fill
in a friend’s name, and in the 'next' field, you write the number of the next card. The last card in
the chain leaves the 'next' field empty.

In languages like Nim or C, lists — also called linked lists — are dynamically created data
structures consisting of elements (called nodes), where each node has a field, which is a refer
ence or pointer to its successor or predecessor. When the nodes have only a successor field,
we call the list a singly-linked list, and when it also has a predecessor field, then we call it a
doubly linked list. Contrary to arrays and Nim’s sequences, lists do not allow access to arbi
trary elements; we can only traverse the list starting from its first element for singly-linked
lists, or from its last element, for doubly-linked lists. The first element of a list is also called its
head, and the last element is called its tail. Often, the head and the tail elements are just plain
nodes. However, the head can also be an extended node object with additional fields that
carry information for the whole list, such as an additional string field for the list name and
an integer field for the actual list length. In this section, we use the simplest form of a list,
which is a single-linked list, where the head is just an ordinary node. If the head has the value
nil, then the list is empty.

Now, let’s create a small Nim program. It will read the names of our friends from the terminal, cre
ate a list of all friends, and finally, print the list.

type
 Friend = ref object
 name: string
 next: Friend

var
 f: Friend # the head of our list
 n: string # name or "quit" to terminate the input process

while true:
 write(stdout, "Name of friend: ")
 n = readline(stdin)
 if n == "" or n == "quit":
 break
 var node: Friend # ①
 new(node)
 node.name = n

134

 node.next = f
 f = node

var ff = f # save f for later...
while ff != nil:
 echo ff.name
 ff = ff.next

① The actual name for this temporary variable is arbitrary, we could have used el for element,
maybe.

This example code doesn’t seem to be that easy. But it is not really difficult, and when you have
understood it, you can already call yourself a Nim programmer. Perhaps you should think about
the code above for a few minutes, before reading the explanations below.

First, let’s summarize what our program should do: It’s designed to read in the names of friends
whom we’d like to invite to our next party. Of course, when entering the names, we would need a
way to tell that we are done. In our program, we can do this in two ways: either by entering an
empty name — just pressing the return key — or by entering the text "quit" to stop the loop. Unfor
tunately, this means we can never invite a friend named 'quit' to our parties. When we have termi
nated the input loop, then the next loop prints all the entries to the terminal.

Let us start with the type and variable declarations: We use a user-defined type named Friend,
which is a reference to an object, that object type has a field name of type string, and a field next,
which is again a reference to the same data type.

We are using two variables: one called n of type string, to read in a name or the quit command
from the terminal, and another variable called f of type Friend. While the variable f seems to repre
sent just a single friend, its next field means it can actually represent an entire list of friends, with f
as the starting point or head of that list.

In the code above, we are using a special while loop — special because the construct while true:
and because the loop contains a break statement. Earlier, we said that we should avoid the break
statement in loops because it interrupts the control flow and can make it more difficult to under
stand and prove the flow. But in this case, that form makes some sense: For the first loop, we have
to first read in a name from the terminal, and then we can decide what to do, so we can not really
evaluate a condition after the while statement at the top. So we use the simple constant condition
true, which would never terminate the loop. We need a break inside the loop body to terminate the
loop.

Let’s first investigate the second loop, as it’s relatively straightforward: We use a new variable
named ff in place of f for this loop to ensure the original f remains unmodified, preserving it for
further use. In the while condition, we check if the current value of ff is nil, indicating that there
are no more entries in our list. In that case, we terminate the loop, as we are done. If ff doesn’t
equal nil, then ff points to a valid content — i.e., there’s at least one valid name that we can access
using the field access operator and print with echo ff.name. Note that in Nim the field access opera
tor . works in the same way for value object types as well as for ref object types. For ref object
types, we could also use ff[].name instead of just ff.name. This means we first apply [] to ff to get
the content, then use the . operator to access the name field. In some other languages like C, we

135

would have to use a special operator -> to access fields of pointer or reference types.

The most intriguing statement in the output loop is ff = ff.next. We assign the content of ff.next to
ff and proceed with that new content. The content could be a valid reference to one more Friend
object, or it could be nil, indicating that our loop should terminate.

The input loop is also not that complicated: To make the process of adding more friends to the list
easy, we always add new names at the beginning. First, we ask the user to enter a name. We use
write(stdout) for this, as echo() always generates a new line, but we want to read in the name on
the same line. If the name is empty or has the special value 'quit', then we terminate the input loop.
In the loop, we use a temporary variable called node of type Friend and allocate a memory block for
it with new().[3] Then we assign the read in friend’s name n to the name field. The last two statements
in the loop body can be a bit challenging to understand: First, we assign the value of f to node.next.
Now, node is basically the start of our list, and its next field refers to the first element of the current
list. Fine, but we said that the node variable is only a temporary variable, we do not intend to use it
longer as necessary. However, node is currently the head of our list, making it very useful. On the
other hand, the former starting point f is now redundant as the current f is identical to node.next.
So the trick is, we just assign to f the value of node. Now, f represents the complete list, and we no
longer need node. We can reuse the node variable in the next loop iteration, but we must allocate a
new memory block for the node reference. The previous memory block is still in use; it contains the
name we just entered and a reference to the next object in the list.

Note that we add new elements at the top of the list using this method. We’ve chosen this approach
because it’s quite straightforward. For adding at the end of the list, we would have to use one more
reference variable which allows us always access to the current end of the list, or we would have to
traverse the list from head to tail whenever we would like to add elements at the tail.

For another exercise, let’s consider deleting entries from our list. Essentially, this operation is
straightforward; we would just skip one entry. Let’s incorporate the following code into the previ
ous program:

var f1 = f # save original f
while f1 != nil:
 write(stdout, "Name to delete: ")
 n = readline(stdin)
 if n == "" or n == "quit":
 break
 if f1.name == n:
 f1 = f1.next
 else:
 while f1.next != nil:
 if f1.next.name == n:
 f1.next = f1.next.next
 break
 f1 = f1.next

Here, we’re once again using an outer while loop to read in the names we want to delete. That loop
uses the condition while f1 != nil: because, naturally, we should stop when the list is empty.

136

In the loop body, we have an if statement, and within the else branch of this if statement, we have
another loop. The reason we need the if statement is that the case where the name to delete is the
first in the list is somewhat special. Let’s examine the inner loop first. That loop operates under the
assumption that there are at least two elements in the list, f1, and f1.next. We compare the name of
the next entry with n. If they match, then we would have to skip the next entry. We can do that by
the statement f1.next = f1.next.next. That is, we replace the reference from the current element f1
to the next list entry, that is f1.next, by the next entry of the next element, which is (n.next).next.
We do not have to write the parenthesis. The n.next.next entry can be nil, in that case, it is the end
of the list. If we found a matching name, then we terminate the inner loop with a break statement,
and we are done. Otherwise, we assign to f1 the value of f1.next and continue the loop execution.
Now to the special case where the name to delete is the first in the list. We need the first if branch
for that — if already the first element matches the name to delete, then we just skip the first ele
ment by setting the head of the list to the next entry, which may or may not be nil.

This is one way to solve the task. For operations on lists, there are usually various solutions, some
optimized for simple or concise code, some for performance. You may copy the code segment above
to the end of the former code, and maybe add one more copy of our printing loop at the end again.
Afterwards, you will have a program that reads in a list, prints the contents, asks for names to
delete, and ultimately prints the updated list. Perhaps you can improve the code, or maybe you can
detect special corner cases where it may fail. What happens, for example, when some of your
friends have the same name? Might the program fail in that case? Or you may add more fields to
your Friend data type. You could include a text field indicating 'male' or 'female', and subsequently
report the male-to-female ratio. Could you potentially remove males from the list when there are
more males than females?

For references to objects, the assignment operator = copies the references, but not the object. Simi
larly, the operator == used for equality tests compares the references, not the content of the objects
to which the references point. If you want to compare the content of the objects, you can apply the
dereference operator [] on both references:

type
 RO = ref object
 i: int

var
 ro1 = RO(i: 1)
 ro2 = RO(i: 1)
 ro3 = ro1

echo ro1 == ro2 # false
echo ro1[] == ro2[] # true
echo ro1 == ro3 # true

In modern Nim, we generally use the constructor syntax like var ro1 = RO(i: 1) or
var computer1: Computer(price: 799.99; quantity: 2) to allocate and initialize ref
objects, and avoid explicit new() calls for the allocation, followed by explicit field
initialization. The constructor syntax is more compact, and the combined construc
tion with initialization may allow the compiler to reason about the code more

137

effectively and to produce better code. As the constructor syntax looks the same
for value and ref objects, this may also simplify later changes of the program.
Thus, the use of explicit new() calls is mostly considered a legacy approach and it is
highly recommended to use object constructors instead. In rare instances where a
complex constructor call fails to compile, one may resort to using new().[4]

[1] Sometimes the compiler may refuse to accept the addr() function, for example for variables defined with the let keyword. For
that case, we may have to use the function unsafeAddr(). In Nim 2.0 unsafeAddr() is an alias for addr().

[2] At least, modern operating systems prevent that our program corrupts memory regions of other software. So other programs
are safe, but our own program may crash.

[3] The name of this temporary variable is fully arbitrary and does not indicate a special meaning. We could have used el as an
abbreviation for element, t or temp to indicate that it is only a temporary variable. We use the name "node" here because that is a
common term for the elements in linked lists, trees, or similar dynamically created data structures. We could have used the single
letter n instead of "node", but n is already used for the actual friend’s name entered by the user.

[4] https://forum.nim-lang.org/t/9929

138

https://forum.nim-lang.org/t/9929

Procedures and functions
Procedures and functions, called proc and func in Nim, are used to structure the program source
code. Functions, a subtype of procedures, return a value but do not modify global variables or oth
erwise change the state of the program. When we talk about procedures in this book, what we say
applies to functions as well, unless stated otherwise.

Procedures and functions are typically used to group sequences of statements that perform a spe
cific task.

We can pass parameters to procedures, e.g., data that the procedure should process, and the proce
dure can return a result. Related sets of procedures can be grouped into library modules, e.g., procs
that perform various string operations. We will discuss the use and creation of modules later in the
book.

The terms procedure and function were used in Pascal and other languages of Wirth already, while
C uses the term function only, and Fortran uses the term subroutine instead. Finally, Python and
Ruby use the rather unusual terms def and fun respectively.

Nim’s procedures are fundamentally similar, yet much more advanced than their equivalently
named counterparts in the Wirthian languages or the plain functions in the C language. Nim’s
procs support generics, overloading, named parameters, default values, special parameter types
such as varargs and openArray, various methods of returning a result, and multiple calling conven
tions, including method and command calling conventions.

Introduction
We call or invoke a proc by just writing its name, followed by a parameter list enclosed in paren
theses. The parameter list can be empty. When we call a proc, the program execution continues
with that procedure, and when the execution of the procedure terminates, the next statement after
that proc call is executed. Sometimes we say that we jump into a procedure and jump back when
that procedure terminates.

In Nim, functions are a special form of procedures that return a result and do not modify the cur
rent state of the program. Modifying a global variable or performing an input/output operation
would be examples of modifying the state. We have already used some predefined procedures like
echo() for output operations, add() for appending single characters to strings, and readLine() for
reading in textual user input. And we talked about math functions like sin(), cos(), pow() — these
are functions as they accept one or two arguments and return a result, but do not change the
state — calling them again with the same arguments would always give the same result. The proce
dure readLine(), despite its name, is not a function, as the result typically varies for each call: We
pass a file variable as an argument, which might change its state for each call, possibly because the
end of the file is reached. A function is only a special subtype of a procedure. The func keyword
indicates to the reader of the code and to the compiler some special properties, namely, that a result
is returned and that the global state is not changed. Whenever the func keyword is used, a proc
would suffice as well, and in this text, we mostly speak about procedures, even when a function
would suffice.

139

Let us start with a very simple function called sqr() for squaring.

func sqr(i: int): int =
 i * i

A procedure declaration consists of the keyword proc, a user-selected name, an optional parameter
list enclosed in parentheses, and an optional colon followed by the result data type. For a function
declaration, we use the keyword func instead of proc, and as functions return a result, we have to
specify the result data type.

Note that this is only a declaration so far — the compiler could recognize the construct, its parame
ters, and its result type. We sometimes call this construct a procedure header.

Typically, we do not only declare a function, but we define it, that is, we add an equal sign to the
proc header and add an indented procedure body that contains the code that is performed for each
invocation.

Pure proc declarations can be necessary for rare situations, such as when two procedures call each
other. In this case, the procedure defined first would call the other procedure, which is not already
defined, so the compiler may complain about an unknown procedure. We could solve that problem
by first declaring the second procedure so that the compiler would know about its existence. We
would then define that second procedure later, closer to the end of the program file.

The sqr() proc above accepts an integer argument and returns its square, which is also of the same
data type. We would call that proc as follows:

var j: int
j = 7
echo sqr(j)

Earlier in this book, we said that the compiler processes our source code from top to bottom and
that the final program is executed from top to bottom too. The first statement is indeed true, for
that reason, it can be necessary to declare a function at the top, and define it below, as we can not
call a proc before it is declared or defined.

For the program execution, we have to know that procs are only executed when we call them. That
is, when we write a proc at the top of our source code, then that proc is processed by the compiler,
but it is not executed during program runtime before we call it. As the Nim compiler supports dead
code removal, the code of procedures that we never call would not be included in the final exe
cutable.

The procedure body builds a new scope. We can declare entities like variables, constants,
types, or other procedures and functions in that scope. These entities are only visible in the
procedure body, but not outside the proc.

Parameter lists of procedures consist of one or more lists of parameter names, separated with com

140

mas, followed by a colon and the data type of the parameters. The sub-lists with the same data type
are separated by semicolons:

proc p(i, j, k: int; x, y: float; s: string)

While the Wirthian languages would require semicolons to separate the parameter blocks, in Nim
we could also use plain commas for that. For the data types of procedure parameters and as the
result type all of Nim’s data types are allowed, including structured types, ref, pointer, and con
tainer types. Additionally, we can use the data types openArray and varargs as parameter
types — these two types are not allowed for ordinary variables, and varargs is not valid as a result
type. We will learn the details of all these types soon. When we call or invoke a procedure, we can
pass literal values, named constants, variables, or expressions to it.

When we call a procedure with multiple arguments, we have to specify the arguments in the order
in which they are listed in the proc header, separated by commas, and the arguments must have
compatible data types:

var i: int = 7
var x: float = 3.1415
p(i, 13, 19, x, 2.0, "We call proc p() with a lot of parameters")

Here, compatible data types mean that for the i, j, and k parameters, which are specified as int
types in the proc definition, variables of smaller int types like int16 would work. For the two para
meters of the float type, we would have to pass floating-point variables or a float literal. As a spe
cial case, an int literal would also work, as the compiler knows the desired data type and automati
cally converts the int literal into a float for us, as long as that is possible without loss of precision.
We could pass 2 instead of 2.0, but passing a very long int literal with more than 16 digits may fail
at compile time:

proc p(i, j, k: int; x, y: float; s: string) =
 echo s

var
 n: int16
 m: int # int64 would not compile
 z: float32
p(n, n, m, 1234567890, z, "")

Actually, float32 types and int literals up to ten digits seem to work for float parameters, but even
on 64-bit systems, the int64 data type is not permitted for int parameters. As you can see from the
example above, it is possible to pass the same variable multiple times as a parameter, and empty
string literals are, of course, allowed too.

Nim also supports default values for proc parameters and named parameters; that is, we can leave
parameters unspecified and use the default value, or use the actual parameter names, like in a vari
able assignment, when we call a proc:

141

proc p(i: int; x: float; s: string = "") = echo i.float * x, s
p(x = 2.0, i = 3)

Here, we used named parameters when calling the proc p(). This way, we can freely order the para
meters, and as parameter s has a default value, we can leave it unspecified and just use the default
value.

Functions always return a result, and procedures can return a result, but they don’t have to. In the
C language, function results can just be ignored, but in Nim, whenever there is a result, then we
have to use it at the call site; that is, we have to assign the returned value to a variable, or we have
to use it in an expression. Nim enforces this, as generally, the returned value is important. The
returned value can be the actual result, as in a sin() call, or it may give us additional information,
like the number of read characters when we do text processing, or perhaps an error indication, like
the end of the file. For the rare conditions when we really intend to ignore the result of a function
call, we can call that function as discard myProcWithResult(a, b,…). Another solution is to apply the
{.discardable.} pragma to the function definition. We will learn more about pragmas later. When a
procedure should not return a result, then we can use the void return type or just leave the return
type out — the latter is recommended, void types are used only rarely in Nim. When the proc has
no parameters at all, then we can even leave out the empty parameter list in the procedure defini
tion:"

proc p1() =
 echo "Hello and goodbye"

proc p2 =
 echo "Hello and goodbye"

proc p3: void =
 echo "Hello and goodbye"

Calling procedures

When we call a procedure or a function, that is, when we intend to execute it, we always have to
specify a parameter list enclosed in brackets, but the parameter list can be empty:

var i = myFunc(7)
var j = myF()
var p = myF # not a function call, but an assignment of the proc to variable p

Note that the last line in the above code is not a call of myF(), but an assignment of that function to
the variable p. We will discuss this use case soon.

We have already learned that we can also use the method call syntax, like 7.myFunc instead of
myFunc(7), that we can use the command invocation syntax like in echo "Hello", and that we
should avoid putting a space between the proc name and the opening bracket, as that would be
interpreted as a command call with a tuple argument. When the function or procedure expects

142

multiple arguments, we separate the arguments with commas, and we generally put a space after
each comma. For the use of the command invocation syntax, there are some restrictions: When the
procedure has more than one parameter and returns a result, the command invocation syntax can
not be used:

proc p(i, j: int): int = i + j # command invocation syntax does not work
proc p2(i, j: int) = echo i * j
echo p(1, 2) # ordinary proc call
echo 1.p(2) # method call syntax
p2 1, 2 # command invocation syntax
echo p (1, 2) # argument looks like a tuple, so this would not compile

For the proc definition above, we wrote the body statement directly after the equal sign. This is pos
sible and sometimes used for very short procedures. Indeed, here p() is a function.

In the examples above, we passed plain integers as parameters to procedures. But of course, proc
parameters can have any type; we can pass strings, arrays, objects, and more. The method we use
to pass the parameters to the procs is sometimes called 'pass by value', an old term introduced for
the Pascal language, used to indicate that the passed parameter seems to be copied to the proc. The
proc is not able to modify the original instance. In the next section, we will learn about the var
parameter type, which is used when we want to allow the proc to modify the original instance. In
the Wirthian languages, the procedure parameters actually get copied, so inside the proc, we could
modify them, but only the copy is modified, and the original instance remains unchanged. In Nim,
it’s a bit different. When we pass parameters by value to a proc, we cannot modify it at all in the
proc body. If we require a mutable copy, we have to generate that copy ourselves in the proc body.
This allows some optimizations: Nim does not really need to copy the proc parameters, as they are
immutable, Nim can just work with pointers to the original instances internally. In fact, there are
rumors that for parameters smaller than 3 * sizeof(float), Nim copies the instances, but for larger
instances, Nim works internally with pointers to the original value. However this is an implementa
tion detail — data copied to the procs stack allows the fastest access, but on the other hand, the ini
tial copy process can be expensive, so it is a compromise.

Procedure parameters of var type

Our sqr() function above accepts only one parameter, and that parameter is a value type, which
indicates that we cannot modify it in the procedure body. That fact is useful to know for the caller
of a proc, as one can be sure that the passed parameter has not been modified and is available
unchanged after the proc call.[1] But of course, there are situations where we may want a passed
parameter to be modified. Let’s assume that we want to "frame" a passed string; for example, we
might want to pass in the string "Hello" and change it to "* Hello *". Furthermore, let’s assume that
we might sometimes want to use other characters instead of the asterisk, perhaps a + sign.

proc frame(s: var string; c: char = '*') =
 var cs = newString(2)
 cs[0] = c
 cs[1] = ' '
 insert(s, cs)

143

 add(s, ' ')
 add(s, c)

we can call that proc like
var message = "Hello World"
frame(message)
echo message

Note: In the Wirthian languages, we actually put the var keyword for procedure parameters
in front of the parameter name; that is, we would have to write proc frame(var s: string; c:
char = '*') = for the procedure header.

The frame() procedure above accepts two parameters and returns no result. The first parameter
has the type string; it is not a value parameter but a var parameter, which is indicated by the var
keyword between the colon and the type of the parameter. Note that we use here again the key
word var that we used earlier to declare variables. The main reason we use the same keyword
again is that we do not want to use a new one — var proc parameters are different from var decla
rations. Parameters of var type can be modified in the procedure body, and that modification is vis
ible after the proc call.[2] The second proc parameter is a plain value type; it is a character that has
the default value '*'. To specify a default value for a parameter, we write an equal sign after the
parameter type followed by the actual default value, as we would do in an assignment. Indeed, as in
an assignment, we can even leave out the colon with the data type in this case, at least for the case
that the compiler can infer the correct data type from the assigned default value. Default values are
useful for parameters that have in most cases the same value but can be different sometimes. The
advantage is that when calling that procedure, we can simply leave that parameter out. For default
values, we have to be a bit careful; only value parameters can have default values. Furthermore,
when we call a procedure with many parameters with default values, it may not always be clear
which parameter we pass and for which parameter we want a default value.

It should be obvious that passing literals or named constants as var parameters, as in
frame("Hello"), makes no sense and results in an error message from the compiler.

To generate the frame around the passed-in string, we need to insert two characters at the begin
ning of the string and append two more characters. Inserting in strings is not a very cheap opera
tion, as it involves moving all the following characters. So we try not to insert two single characters,
but we first create a short string consisting of the passed c character and a space character, and
then insert that two-character string at the beginning of the passed string. We use the standard
procedure newString() with parameter 2 to create a new string of length 2 with undefined content,
and then fill in the content by using the subscript operator. We could have used the add() proc to
add that two characters to an empty string, but that is a bit slower. Then we use the standard proc
insert() to insert our two-character string at the front of our passed string. Finally, we add a space
and the c character to the passed string. The passed string is now modified; it is four characters
longer. That modification is noticeable for the caller of that procedure; in other words, echo() will
print the modified version. Actually, when we think about it, we might feel that our strategy to first
create the two-characters string cs is a bad idea, as the allocation may cost more time than just
inserting the individual characters directly.

144

Passing mutable arguments to procedures using the var keyword was sometimes called "pass
by reference" in the old Wirthian languages like Pascal. This leads to confusion for some peo
ple, unfortunately. Of course, proc var parameters are not really related to Nim’s ref type.
Well, using Nim’s ref data types would also allow modification of proc arguments, just as
using pointers would. But we never use ref types in Nim just to be able to modify passed data
in procs, and also not to avoid a possible expensive copy operation for value types. We could
create a ref instance with var intRef: ref int = new int, pass that intRef to a proc, and
thereby allow the modification of the actual value to which intRef points, from inside the
proc. However, this would be unnecessary, as the var parameter already allows for this. In
Nim, we use reference types when we really need them, such as when we require reference
semantics, or when we need to create highly dynamic, many-to-one data types, like tree struc
tures.

Our frame() procedure above modifies the passed string. Instead, we could have decided that the
procedure should not modify the string, but should return a new string consisting of the frame
with the passed string in the center. Generally, when creating procs, we have to decide what is
more useful — modifying a passed value or returning a modified copy. At times, we also need to
consider efficiency. Returning newly created large data types like strings can be expensive. A
string is not a trivial structure since it contains a dynamic buffer for the string content that needs
to be allocated. On the other hand, for the passed var string we inserted characters, which involves
moving characters and is also not a really cheap operation, and maybe when we insert a lot, the
string buffer must be even enlarged, which is again expensive. Thus, for this use case, it is unclear
which approach is better — we primarily used the var parameter to introduce var parameters.
Let’s investigate how a function that returns a modified string might look:

func framed(s: string; c: char = '*'): string =
 var res = newStringOfCap(s.len + 4)
 add(res, c)
 add(res, ' ')
 add(res, s)
 add(res, ' ')
 add(res, c)
 return res

we can call that proc like
echo framed("Hello World")
echo framed("Hello World", '#')

The above code is one possible solution. We can use the keyword func instead of proc here, as we
only return a result and modify no states. We pass the initial string and the character for the frame
both as plain value parameters and return a newly created framed string. In the function body, we
start with an optimized version of the procedure newString() from the sʏsᴛᴇᴍ module, called new
StringOfCap(). Like newString(), this proc creates an empty string variable, but it ensures that the
data buffer of the new string has exactly the specified size. That is an optimization, which makes
sense in our use case, as we know that our newly created string will have 4 characters more than
the passed string. So we can avoid that the result string has to be enlarged while we add characters

145

or the initial string, and we ensure at the same time that no space is wasted — the data buffer size
of the new string will be a perfect fit for the desired result. The rest of the function body is straight
forward: we just add() what is needed and return the result. As mentioned earlier, add() is not
extremely fast. Therefore, if you need to frame millions of strings each day, you might consider
avoiding add(), and you already know enough about Nim to do this. Just try it. You might start with
a string of the right size containing undefined content created by newString(s.len + 4), and then
you could copy in the required data, character by character, in a loop. Or you may use the slice
operator to insert the passed string into the new string.

▼ Click here to see a possible solution.

func framed(s: string; c: char = '*'): string =
 var res = newString(s.len + 4)
 res[0] = c
 res[1] = ' '
 res[2 .. s.high + 2] = s # we may insert the string by using the slice operator or
 # for p in 0 .. s.high: # we can use a for loop and
 # res[p + 2] = s[p] # the subscript operator
 res[^2] = ' '
 res[^1] = c
 return res

The situation, where we may need a procedure that works on a var parameter in one case and
returns a modified copy in another case, is not that rare. For example, Nim’s standard library con
tains a procedure called sort(), which can sort container data types in place, and a procedure called
sorted(), which returns a sorted copy. This code duplication is not really that nice. Of course,
sorted() is the more universal solution, as we can always replace sort(data) with data =
sorted(data). However, the latter creates a temporary copy, which may not be optimal for perfor
mance. Since Nim version 1.2, a dup() macro is available from the sᴜɢᴀʀ module that creates copies
of variables and then applies one or more in-place procs to the copy. Thus, the procs sorted() or our
proc framed() would be unnecessary. We can use dup() as in this example:

from std/sugar import dup

proc frame(s: var string; c: char = '*') =
 var cs = newString(2)
 cs[0] = c
 cs[1] = ' '
 insert(s, cs)
 add(s, ' ')
 add(s, c)

echo "Hello World".dup(frame)
echo "Hello World".dup(frame, frame)
echo "Hello World".dup(frame('#'))

Note that we apply frame() twice in the penultimate line. Similarly, we could apply a sequence of
different procs. The output of the above program is

146

* Hello World *
* * Hello World * *
Hello World

Returning from a procedure and the implicit result variable

The execution of a procedure terminates once the last statement of the procedure body has been
processed. We can also terminate a procedure earlier when we specify a return statement some
where.

Functions and procedures which return a result can also terminate with the last expression of the
procedure body, or earlier with a return expression like return i * i. Functions and procedures
with a result automatically declare a mutable result variable for us, which is of the function’s
return type, and we may use or just ignore it. So for our previous sqr() function, we have various
ways to write it:

func sqr1(i: int): int =
 i * i

func sqr2(i: int): int =
 result = i * i

func sqr3(i: int): int =
 return i * i

For short and simple procedures, the first form is often used. For longer procedures, where the
result is constructed in multiple steps, like some string operations, using the result variable makes
sense. Finally, when multiple points exist where we may return, using return statements may make
sense. One use case involves an early error check, where we might want to return -1 as a form of
error indication when writing a procedure that should calculate the square root of an integer value.
(Well in Nim we have other and sometimes better ways to catch errors, we will learn about that
later.)

Generally, we should avoid writing something like

func sqr(i: int): int =
 result = i
 i * i

as it is unclear in this case whether the expression i * i is returned or the result variable with the
value i. In Nim v2.0, we will receive a warning or an error message in such cases.

For the performance of our code, it may have a tiny benefit to only use the result variable and fully
avoid return statements, as in this case for a function call like var i = sqr(j) the result variable
may be just an alias for the actual result i here, so that the compiler can optimize the code and
avoid temporary copies. This is a well-known optimization, called NRVO (Named Return Value Opti

147

mization), in languages like C++.[3]

Programmers often prefer to perform early checks at the beginning of a procedure to verify all
parameters have valid values and to terminate the procedure execution immediately in case of
invalid data by using a return statement. This approach avoids deeply nested code in the proc
body for these checks. In contrast, compiler designers, such as Mr. Rumpf, prefer to avoid these
return statements and instead use nested if clauses, as this approach allows for better control flow
analysis and compiler optimization.

Var return type

A procedure, converter, or iterator may return a var type that can be modified by the caller. The
Nim language manual provides this basic example:

var g = 0
proc writeAccessToG(): var int =
 result = g
writeAccessToG() = 6
assert g == 6

In this way, we can call a proc and immediately assign a new value to the result. In the aforemen
tioned example, this works because the result is an alias for the global variable g.

Var return types are actually used for iterators like mitems() or mpairs(), which allow modification
of the yielded results. For details about and restrictions on the var return type, you should consult
the Nim language manual:

References:

• https://nim-lang.org/docs/manual.html#procedures-var-return-type

Proc name overloading

Note that we used the proc names sqr1, sqr2, and sqr3 above. Using the same name with the same
argument types multiple times would result in a redefinition error, as the compiler could not know
what proc body should be executed when that proc name is called. Redefining existing procedures,
with the same name and the identical parameter list, is not allowed in Nim.

However, Nim supports so-called procedure overloading; that is, we can use the same name when
the parameter list is different, as the compiler can select which proc has to be called based on the
parameters in the proc call:

func sqr(i: real): real =
 i * i

We have only changed the parameter and result data types. Now there is no conflict with the proc,
having the same name, that we defined for integers. Note that Nim uses only the parameter list for
overload resolution, but not the result type of a procedure or function. The reason for that is that

148

https://nim-lang.org/docs/manual.html#procedures-var-return-type

Nim supports type inference, and this would not work if we had two procs with the same name,
each accepting an int parameter, but one returning an int and one returning a float number.

Nim also supports named arguments in procedure calls; for instance, we could invoke the proc
above with sqr(i = 2.0). Named arguments can be useful when procs or functions have many
arguments, potentially some with default values, and when we do not remember the order of para
meters or want to specify only a few.

Actually, we can use multiple procs with the same name and identical parameter list when we use
named arguments for the invocation, as in

proc p(i: int): int =
 i * i

proc p(j: int): int =
 j + j

#echo p(2) # fails to compile, ambiguous call
echo p(i = 3)
echo p(j = 3)

Objects and ref objects as procedure parameters

In the previous section, we learned that we have to use var parameters when the procedure should
be able to mutate the variable permanently. This also applies when the parameters are objects.
When a procedure should modify fields of an object parameter, then we have to pass that object as
a var parameter. In the following example, proc t1 gives a compiler error because it tries to modify
a field of an object while the object instance is not passed as a var parameter. If we remove proc
t1, then we can compile and run the example:

type O = object
 i: int

proc t1(o: O) =
 o.i = 7 # Error: 'o.i' cannot be assigned to

proc t2(o: var O) =
 o.i = 13

proc main =
 var x = O(i: 3)
 echo x.repr
 t2(x)
 echo x.repr

main()

The output is:

149

O[i = 3]
O[i = 13]

The proc t2 gets a var parameter and can modify fields of the passed object. Here we used the
expression echo x.repr to print the whole object. Strings and sequences are value objects in Nim,
so you have to pass them as var parameters when you want to change their length or when you
want to modify elements. This code would give you compile errors unless you add the var keyword
to make the procedure parameters mutable:

proc t1(s: string) =
 s.setLen(7)
 s[0] = 'x'

proc t2(s: seq[int]) =
 s.setLen(7)
 s[0] = 13

This was not really surprising. But what happens when we use a reference to an object and pass it
to a procedures as a value or as a var parameter? In the code below, proc t1 gets a variable of type
ref object and the procedure can modify fields of the passed instance. That can be indeed surpris
ing. In this case, passing the ref object without the use of the var keyword means only that we can
not mutate the ref value itself in the procedure, but we are allowed to modify the fields of the
object. For proc t2, we pass a var parameter. As always, we can modify a var parameter in the pro
cedure, so we can assign to it a newly created instance.

type O = ref object
 i: int

proc t1(o: O) =
 o.i = 7

proc t2(o: var O) =
 o = O(i : 11)

proc main =
 var x = O(i: 3)
 echo x.repr
 t1(x)
 echo x.repr
 t2(x)
 echo x.repr

main()

When we compile and run the above code, we get the following:[4]

150

ref 0x7f054a904050 --> [i = 3]

ref 0x7f054a904050 --> [i = 7]

ref 0x7f054a904070 --> [i = 11]

For a ref object, the repr() function gives us the address of the object instance in memory and the
contents of its fields. The first two echo() statements show the same address, indicating that proc t1
has modified only a field of our instance, the instance itself (its address in memory) was not
changed. But proc t2 has created a new instance and assigned that value to the variable x in the
main() procedure. We notice this as the address of variable x has changed. The old instance variable
with the address 0x7f054a904050 is now unused and will be freed by the Nim memory management.

Nim v2.0 will provide the strictFuncs pragma, which can be used to ensure that a procedure with a
ref object parameter is not allowed to modify fields of that ref object. For details, see the Appendix
of this book or the latest version of the Nim language manual.

Special argument types: openArray and varargs
The openArray and varargs data types can be used only in parameter lists.[5] The openArray is a type
that allows passing arrays and sequences to the procedure or function. This makes sense, as both
arrays and sequences store their content in a block of memory, which can be processed uniformly.
Although arrays generally do not have to start with index number 0, when passed as openArray, the
first element is mapped to index 0, and the index of the last element is available by using the high()
function on the passed array parameter. Whenever we write a procedure that accepts an array or a
sequence, we should consider using the openArray parameter type to allow passing in both data
types. Strings can also be passed to procedures accepting openArrays with char base type. Note that
a proc with an openArray parameter type cannot change the length of a passed seq, as sequences are
handled like arrays for the openArray parameter type. Thus, in the following code, the procedure t1
generates a compiler error while t2 compiles and works fine.

proc t1(x: var openarray[int]) =
 x.setLen(7)

proc t2(x: var seq[int]) =
 x.setLen(7)

In fact, since Nim version 1.6, it is possible to use the openArray type as the result type of procs and
even as local variables. However, these view types are still experimental, see https://nim-lang.org/
docs/manual_experimental.html#view-types.

The varargs parameter type is similar to the openArray type, but it additionally permits the passing
of an arbitrary number of single arguments. The compiler automatically collects the individual
arguments into an array, allowing us to use it as an array within the procedure body, for example,
by iterating over it.

151

https://nim-lang.org/docs/manual_experimental.html#view-types
https://nim-lang.org/docs/manual_experimental.html#view-types

proc print(s: varargs[string]) =
 for el in s:
 stdout.write(el)
 stdout.write(", ")
 stdout.write('\n')

print("Hello", "World") # compiler builds the array for us
print(["Hello", "World"]) # we generate the array ourselves

There exists a variant of the varargs argument type that performs a type conversion automatically
by applying a proc on all arguments. For example, varargs[string, `$`] would apply the stringify
operation on the passed arguments automatically. That is what echo() does.

Varargs arguments may only be allowed as the last argument in a parameter list.

Finally, one might wonder if it makes sense to specify a parameter of type var varargs. If we try to
pass a constant string this will obviously not work, and if the compiler generates an array for us, it
does also not work, the automatically generated array seems to behave like a constant array. But
can we pass an array variable? Let’s try:

proc print(s: var varargs[string]) =
 s[0] = "Goodbye"
 for el in s:
 stdout.write(el)
 stdout.write(", ")
 stdout.write('\n')

var msg = ["Hello", "World"]
print(msg)

Surprisingly, this does not compile, although it works when we replace varargs with openArray.

Procedures bound to a data type
In some other programming languages, such as Python or Ruby, we can define class methods or sta
tic methods that are bound to a class or type and can be invoked as MyType.myProc. In Nim, we can
achieve something similar using the typedesc procedure parameter type:

type
 Factory = object
 name: string

proc start(t: typedesc[Factory]) =
 echo "Factory.start"

Factory.start

152

Here, we use the method call syntax instead of start(Factory). We will learn more about the type
desc data type later.

Scoping, visibility, and locality
Scoping, visibility, and locality are important concepts in computer programming that help to keep
the source code clean. Imagine if a variable that we declare at some point in our program were visi
ble everywhere. This could generate significant confusion, even for medium-sized pro
grams — whenever we needed a variable, we would have to carefully check which names were
already in use. Furthermore, this would be detrimental to performance, as all variables declared
would reside permanently in memory.

So, most programming languages, including Nim, support the concept of locality — identifiers
declared inside a procedure body or inside another form of a block are only visible and usable
there. We say that they are only visible in that scope. For Nim, we can say that whenever Nim’s syn
tax requires a new level of indentation, that is a new statement block, then all symbols declared in
that block are only visible in that block and in sub-blocks of this block, but not outside that block.
Nim has another important concept of visibility, which is called modules and allows the separation
of our code into logically separated text files with well-defined visibility rules; we will discuss mod
ules later.

Visibility is indeed a straightforward concept. Consider the following illustrative example:

var e: float = 2.7

proc p1 =
 var x: float = 3.1415
 if x > 1.0:
 var y = 2.0 * x
 echo y # OK
 echo x # OK
 echo y # compile error, y is not visible
 echo e # OK, e is declared globally, so it is visible everywhere

echo e # OK
echo x # ?
echo y # ?

In the first line, we declare what’s known as a global variable, which becomes visible throughout
the entire program after its declaration.[6] The variables declared in the proc p1 are referred to as
local variables, and they are not visible outside of proc p1. The variable x is declared at the start of
the procedure body and is visible in the whole procedure everywhere, while variable y is declared
in the if block and is visible only there. So, is it clear whether the last two echo() statements for x
and y compile correctly? Remember that symbols that we define inside a new scope may shadow
symbols that were visible outside the actual block, e.g. by defining a variable named e of arbitrary
type in the proc p1 from above would shadow the global variable e, that is the global variable e
would become invisible until execution of procedure p1 terminates. We have already discussed
shadowing in the introductory section titled scopes, visibility, locality, and shadowing.

153

Related to the visibility of variables is their lifetime, that is the duration of how long they exist and
how long they can store a value. Global variables exist for the entire program runtime — when you
have assigned a value to it that value can be used everywhere as long as the program runs, and as
long as you do not assign a different value, of course. Global variables are generally stored in a spe
cial memory region, which is called the BSS region.

Variables of value type defined locally inside a procedure or function only exist for the duration of
that proc's execution. In other words, they are created when the procedure is invoked and vanish
when the procedure terminates, which is when execution continues with the statement following
the proc call.

Local variables declared in a procedure reside in a special memory region of the RAM, which is
called the stack. The stack is nothing more than an arbitrary part of the whole RAM that is used in
some clever fashion: The memory words in it are used in consecutive order. A so-called stack
pointer is used to indicate the address of the first free area in that stack. So when a procedure is
called, which may have n bytes of local variables, then the compiler can use the area where the
stack pointer points to for that variables, and when the procedure is called then the stack pointer is
increased by that size. So the stack pointer points again to the next free area of the stack, and
another proc can be called in the same way from within the current procedure. Whenever a proce
dure terminates, the stack pointer is set back to the value that it had when the proc started execu
tion. This method of memory management is simple and fast, but it does only work when the total
amount of memory that the local variables in a procedure needs is known at compile-time so that
the compiler can adjust the stack pointer accordingly. It does not work for dynamically sized data
types like strings or sequences.

Note that pointers and references are value types themselves. We can regard pointers and refer
ences as plain integer variables interpreted in a special way — as memory locations. However, the
memory blocks to which the pointers and references may point, and which are allocated by alloc()
or new(), are different: These memory blocks are not allocated on the stack, but in the ordinary
RAM, which we refer to as the heap to distinguish it from the stack.

So, why can’t the stack be used for memory blocks that alloc() or new() provide for us? An impor
tant factor for using the stack to store variables is that the total size needed by a procedure for all
the static variables must be a compile-time constant. The stack pointer is adjusted by that amount
when the proc starts, and all the local variables are accessed with a fixed offset to that stack pointer
then. When we use alloc() or new() in a proc, then we may call that multiple times as we did in our
previous list example, and for alloc() an additional fact is that the byte size that alloc() should
reserve can be a runtime value. So the total amount of RAM that alloc() or new() would allocate is a
runtime value, and we can not use the stack for it. Instead, alloc() and new() allocate a block of
memory in a more dynamic fashion, which is basically that they ask the OS for a free block of the
right size somewhere in the available RAM. That block is later given back to the OS for reuse by
functions like dealloc() or automatically by the GC.

Let’s explore some special cases at the end of this section:

While in languages like C, we always have a well-defined main() function, and all program code is
contained in this function or in other functions that are called from this main function, in Nim, we
also have global code, as seen in scripting languages like Ruby or Python:

154

var i: int
while i < 100:
 var j: int
 j = i * i
 echo j
 inc(i)

It should be clear that the global variable i resides in the BSS segment. But what about the variable
j declared in the body of the while loop? It is clear that this variable is only visible inside the body
of the while statement. But does j reside on the stack? Since there seems to be no procedure
involved, could there possibly be no stack? Could the variable j reside in the BSS segment too? This
is not really clear and might vary among different Nim compilers. But why should we care about
this detail at all? Well, it can be important for performance. Local proc variables allocated on the
stack are generally optimal for performance, and they are usually well-optimized by the compiler.
We will learn more about the reasons for that later when we discuss the data cache. For now, we
should only remember that it is a good idea to avoid global code and put all code in procs. We may
then have an arbitrarily named main() procedure and call it only from the global scope. At least for
the current Nim v2.0, this seems to be a good idea. Potentially, later versions or other implementa
tions will automatically move all global code into a hidden proc for us.

For optimal performance, you should put all your code in procedures or functions,
avoid global code, and, when possible, avoid global variables.

Let’s discuss the above while loop again, but this time within the body of a proc:

proc p =
 var i: int
 while i < 100:
 let j: int = i * i
 echo j
 inc(i)

When we carefully investigate that procedure with the while loop, we may wonder about two
points. First, we said earlier that we can and should use the let keyword instead of var when there
is only one assignment to a variable, so the variable can be regarded as immutable. But if the loop
is executed 100 times, how can we say there is only a single assignment to the variable j? The trick
is that j is local to the while loop, and j is virtually newly created and initialized to 0 for each itera
tion. Therefore, using let is OK and the compiler does not complain.

We can test this fact with this simple program:

proc main =
 var i: int
 while i < 10:
 var a: int
 a = a + 1

155

 echo a
 inc(i)
main()

The output is 1 for each loop iteration because variable a is virtually recreated for each loop itera
tion.

We used "virtually recreated" because we cannot be sure how the compiler may handle it inter
nally. Is storage for variable a already allocated when the procedure is invoked, in the same way
that storage for the loop counter variable i is allocated on the stack when the proc is called? Or is
storage for variable a reserved for each loop iteration by increasing the stack pointer at the start of
the loop and resetting it at the end of the loop? We can’t be sure without reading the compiler
source code, but ultimately, it doesn’t really matter, so we shouldn’t concern ourselves with it.

Generics
In the previous section, we defined a sqr() proc for ints and one for float numbers. Both proce
dures look nearly identical, only the data types differ. In that case, we can use so-called generic pro
cedures.

func sqr[T](v: T): T =
 var p: T
 p = v * v
 return p

echo sqr(2)
echo sqr(3.1415)

We put a square bracket after the function name, which includes a symbolic name. That name is
then used instead of concrete types in the procedure header or in the procedure body.

We can now call this proc with parameters of different types, including int and float types. You
may wonder why that works — Nim is a statically typed language, so how can the parameter of
function sqr() as well accept an integer and a floating-point number? Is there a hidden type-conver
sion involved? No, the trick is that whenever we call that generic proc with a different type, then a
new procedure or function is instantiated. When we call the generic sqr() proc with an int and a
float parameter, the compiler creates machine code for two separate functions during compile
time: one that is called when an int is passed as a parameter, and another that is called when a
float is passed. If we call this procedure again with an int or float parameter, one of the two exist
ing procs would be used. However, for a different, otherwise unused data type like float32, a new
proc would be instantiated again. In this way, generics procedures can lead to some code bloat.
Note that calling the generic function with a data type like a character or a string would fail, as
these types do not support multiplication with themselves.

A slightly different notation is available with so-called or types:

func sqr(v: int or float): auto =

156

 var p: typeof(v)
 p = v * v
 return p

echo sqr(2)
echo sqr(3.1415)

Here, we have limited the parameter types to the int or float type. We could have also defined a
custom type first, like type MyNum = int or float, and used that type for the parameter type of our
sqr() proc. These or types are also called type classes. Instead of the keyword or, the | character
can be used for defining type classes. Again, the compiler would instantiate two separate functions
for both data types. As we had not the symbolic type T available here, we have used the keyword
auto as the return type, and for the type of variable p we used the macro typeof(). The type auto for
the return type works as long as the function returns a well-defined type. Note that we cannot
decide at runtime what type the function should return, so a construct like if cond: return 2 else:
return 3.1415 would not work, at least not when the values are variables of different types. For the
literal value, it may work, as the compiler might be smart enough to guess that we want to return
the float literal 2.0.

A bit of care is needed when we define procedures for mutable or types:

proc t(s: var seq[uint8] | var seq[char]) =
proc t(s: var (seq[uint8] | seq[char])) =

Here we try to define a proc called t which should accept a mutable seq[uint8] or a mutable
seq[char] as a parameter. While the first line compiles fine, the seq[char] would be immutable. The
correct notation is shown in the second line. This behavior was labeled "won’t fix" in the GitHub
issue tracker, so we have to remember this case, see https://github.com/nim-lang/Nim/issues/15063#
issue-665553657.

Let’s assume you want to define a proc that accepts two numbers of int or float type and returns a
float. You may write it in one of these ways:

proc sqrsum(x, y: int | float): float =
 (x * x).float + (y * y).float

proc sqrsum2[T](x, y: T): float =
 (x * x).float + (y * y).float

proc sqrsum3[T1, T2](x: T1; y: T2): float =
 (x * x).float + (y * y).float

var i: int = 2
var x: float = 3.0

echo sqrsum(i, x)
#echo sqrsum2(i, x)
echo sqrsum2(x, 2)

157

https://github.com/nim-lang/Nim/issues/15063#issue-665553657
https://github.com/nim-lang/Nim/issues/15063#issue-665553657

#echo sqrsum2(2, x)
echo sqrsum3(i, x)

The commented-out lines would give you a compiler error. The reason for this is that the proc sqr
sum2[T] defines a generic proc, but the compiler enforces that both parameters have the same type.

The expression sqrsum2(x, 2) compiles fine, as, due to the first parameter x, the compiler instanti
ates a proc for a sqrsum2(2, x) does not compile, as due to the first parameter, which is an integer
literal, a proc for integer parameters is instantiated, and the second x parameter of float type is not
compatible with the instantiated proc.

Generics can become a bit complicated, as we may use multiple different generic types for different
procedure parameters. We can also use generics for object types. For example, we may create lists
as we did for our names list that not only works for strings, but can also work with other data
types like numbers or sequences in a very similar way. We may explain that in more detail later.

Example for the use of generics
Generics are used extensively in Nim’s standard library. Most container types, like sequences or
tables, accept generic types, and generic procedures like sort() are provided that can easily sort
arbitrary data types and objects. We only have to provide a cmp() proc for our user-defined data
types, which sort() can call to compare the values during the sorting process.

We will demonstrate the use of generics in library modules with a few small examples: Assume we
create a library that should be able to store and process arbitrary data types. The stored values may
have well-defined relations, which enables ordering or much more complicated spatial relations.
Triangulation of spatial data points or grouping of the data in structures like RTrees for fast point
location, as well as geometric processing with algorithms like finding the convex hull, are some
examples. To make our example simple and compact, we define a generic container type that can
store only two values of an arbitrary data type. The container allows for the sorting of the elements
by size. The following code example defines a generic container called MyGenericContainer, a proc to
add() data objects into the container instance and a sortBySize() proc to sort the two elements:

type
 MyGenericContainer[T] = object
 storage: array[2, T]

proc add[T](c: var MyGenericContainer[T]; x, y: T) =
 c.storage[0] = x
 c.storage[1] = y

sort by direct field access
proc sortBySize[T](c: var MyGenericContainer[T]) =
 if c.storage[0].size > c.storage[1].size:
 swap(c.storage[0], c.storage[1])

a simple stringify proc for our container data type
proc `$`[T](c: MyGenericContainer[T]): string =

158

 `$`(c.storage[0]) & ", " & `$`(c.storage[1])

type
 TestObj1 = object
 name: string
 size: int

proc main =
 var c: MyGenericContainer[TestObj1]
 var a = TestObj1(name: "Alice", size: 162)
 var b = TestObj1(name: "Bob", size: 184)

 add(c, b, a)
 echo c
 c.sortBySize
 echo c

main()

The sortBySize() proc in the above examples accesses the size field of our data objects directly.
Therefore, we can use the container for arbitrary data types, provided that the data types have a
size field and a > proc is defined for the data type of the size field. In the above example, we have
defined a $ procedure to convert instances of our container into a string, enabling us to call the
echo() function on it. The output of our program looks like

(name: "Bob", size: 184), (name: "Alice", size: 162)
(name: "Alice", size: 162), (name: "Bob", size: 184)

We can avoid the restriction of a matching field name when we provide getter and setter proce
dures which the library procs can use to access the important fields:

type
 MyGenericContainer[T] = object
 storage: array[2, T]

proc add[T](c: var MyGenericContainer[T]; x, y: T) =
 c.storage[0] = x
 c.storage[1] = y

proc sortBySize[T](c: var MyGenericContainer[T]) =
 if c.storage[0].size > c.storage[1].size:
 swap(c.storage[0], c.storage[1])

proc `$`[T](c: MyGenericContainer[T]): string =
 `$`(c.storage[0]) & ", " & `$`(c.storage[1])

type
 TestObj1 = object # arbitrary field names

159

 name: string
 length: int

this getter proc enables sorting
proc size(t: TestObj1): int =
 t.length

proc main =
 var c: MyGenericContainer[TestObj1]
 var a = TestObj1(name: "Alice", length: 162)
 var b = TestObj1(name: "Bob", length: 184)

 add(c, b, a)
 echo c
 c.sortBySize
 echo c

main()

In the above example, our TestObj1 data type has no field with a name that matches the sortBySize()
proc. However, we define a size() proc for our data type that the library function can use. This solu
tion is more flexible, and when we add the inline pragma to the used size() proc or when we com
pile with link-time optimization (LTO) enabled, then the overhead should be negligible.

Generics are typically used in library modules, which provide some functionality to client modules.
For example, a library module can provide a generic sort() function, which then can be used by dif
ferent client modules to sort containers with arbitrary element types. We will discuss modules later
in more detail. For now, it is enough to understand that each Nim module is a separate file, and we
can use the import keyword to incorporate functionality from a (library) module into our main
module. One restriction is that we can actually only import symbols marked with the * export
marker in the imported module.

When we divide the above example into two modules, we might end up with something like:

#module t3.nim
type
 MyGenericContainer*[T] = object
 storage: array[2, T]

proc add*[T](c: var MyGenericContainer[T]; x, y: T) =
 c.storage[0] = x
 c.storage[1] = y

proc sortBySize*[T](c: var MyGenericContainer[T]) =
 if c.storage[0].size > c.storage[1].size:
 swap(c.storage[0], c.storage[1])

proc `$`*[T](c: MyGenericContainer[T]): string =
 `$`(c.storage[0]) & ", " & `$`(c.storage[1])

160

import t3

type
 TestObj1 = object # arbitrary field names
 name: string
 length: int

proc size(t: TestObj1): int =
 t.length

proc main =
 var c: MyGenericContainer[TestObj1]
 var a = TestObj1(name: "Alice", length: 162)
 var b = TestObj1(name: "Bob", length: 184)

 add(c, b, a)
 echo c
 c.sortBySize
 echo c

main()

Note that all procedures in module ᴛ3 and the generic container data type are marked with the *
export marker. This ensures that we can use these symbols in the main module that imports them.
The example with direct field access would look for different modules like this:

module t4.nim
type
 MyGenericContainer*[T] = object
 storage: array[2, T]

proc add*[T](c: var MyGenericContainer[T]; x, y: T) =
 c.storage[0] = x
 c.storage[1] = y

proc sortBySize*[T](c: var MyGenericContainer[T]) =
 if c.storage[0].size > c.storage[1].size:
 swap(c.storage[0], c.storage[1])

proc `$`*[T](c: MyGenericContainer[T]): string =
 `$`(c.storage[0]) & ", " & `$`(c.storage[1])

import t4

type
 TestObj1 = object
 name: string
 size: int

161

proc main =
 var c: MyGenericContainer[TestObj1]
 var a = TestObj1(name: "Alice", size: 162)
 var b = TestObj1(name: "Bob", size: 184)

 add(c, b, a)
 echo c
 c.sortBySize
 echo c

main()

You may wonder why we do not have to export the size field of our TestObj1 (or maybe the object
itself also) as it is used from code defined in a different module. We don’t need export markers
because sortBySize(), while defined in the library module, is a generic procedure and is instantiated
and executed in the application module. For the same reason, we had not to export the size() getter
procedure before.

Lastly, another way to use generic library modules involves passing procedure variables to the
library functions. The passed-in procedures may provide access to properties or attributes of the
stored objects, or they may offer relations between the objects. The latter is often used for sorting
purposes:

module tx.nim
type
 MyGenericContainer*[T] = object
 storage: array[2, T]

proc add*[T](c: var MyGenericContainer[T]; x, y: T) =
 c.storage[0] = x
 c.storage[1] = y

proc sortBy*[T](c: var MyGenericContainer[T]; smaller: proc(a, b: T): bool) =
 if smaller(c.storage[1], c.storage[0]):
 swap(c.storage[0], c.storage[1])

proc `$`*[T](c: MyGenericContainer[T]): string =
 `$`(c.storage[0]) & ", " & `$`(c.storage[1])

import tx

type
 TestObj1 = object
 name: string
 size: int

proc smaller(a, b: TestObj1): bool =

162

 a.size < b.size

proc main =
 var c: MyGenericContainer[TestObj1]
 var a = TestObj1(name: "Alice", size: 162)
 var b = TestObj1(name: "Bob", size: 184)

 add(c, b, a)
 echo c
 c.sortBy(smaller)
 echo c

main()

Here, we have modified the sort() proc of our library module in a way that allows it to take an addi
tional procedure parameter. In this case, we use a procedure signature that takes two object
instances and returns a boolean value indicating if the first parameter is smaller than the second.
In our application module, we define a matching procedure and pass that one to the sortBy() proce
dure. Again we get the desired sorted output:

(name: "Bob", size: 184), (name: "Alice", size: 162)
(name: "Alice", size: 162), (name: "Bob", size: 184)

This final method is commonly used in Nim’s standard library, for instance, for sorting sequences
with custom objects. Unfortunately, this approach can introduce some performance regression
because the procedure variable must be passed to the called proc. Consequently, inlining of that
passed proc is not possible for the compiler.[7]

Method call syntax
A useful coding style introduced by Object-Oriented Programming (OOP) languages is the method
call syntax. It was initially used in OOP for objects and later applied by languages like Ruby to all
data types. In a way, Ruby regards all data as objects. Because the method-call syntax is so useful,
we’ve already mentioned it a few times. But as that syntax belongs to the "procedures and func
tions" section, we will repeat the basic facts here:

Method call syntax means that, for example, for a variable s of data type string, we write s.add(c)
instead of add(s, c). Or for an integer variable i, we may write i.abs instead of abs(i). Specifically, we
place the first parameter of the proc parameter list before the procedure name, separating them
with a period. The Nim compiler regards both notations as equivalent. The advantage of the
method call syntax is two-fold: we can save a character, and it becomes clearer which "object"
we’re working with, as it is placed before the expression.

Most OOP languages only allow this notation for a class. For instance, the string class might declare
all possible operations that can be performed with strings, using the method-call syntax for these
operations. One problem is that it can be difficult to add more operations that can be used in that
style, as often all those operations are defined in the class scope; Ruby circumvented this limitation

163

by permitting the so-called reopening of classes, enabling users to add more operations later on.

Like the D language, Nim generally allows this notation, but in D, it’s referred to as the Uniform
Function Call Syntax (UFCS).

Procedure variables
Procedures and functions are not always fully static entities. We can assign procedures and func
tions to variables, pass them as parameters to other procedures or functions, and even generate
and return new functions. Let’s investigate how procedure variables work:

var
 p: proc(i: int): int

proc p1(i: int): int =
 i + i

proc p2(i: int): int =
 i * i

p = p1
echo p(7)
p = p2
echo p(7)

The output of the two echo statements should be 14 and 49 — in both cases, we called the same proc
variable with the same parameter, but the proc variable p was an alias for p1 in the first call and an
alias for p2 in the second call. Note that when we assign a proc to a proc variable, we only write the
name of the proc; there is no () involved. This is because we assign that proc to the proc variable,
but we do not call the procedure in this case. Of course, when we assign a proc to a procedure vari
able, the proc signatures must match; this means the parameter list and the result must be compat
ible.

Now we use a function as a proc argument.

type
 EchoProc = proc (x: float)

proc t(ep: EchoProc; x: float) =
 echo "The value is"
 ep(x)

proc ep1(x: float) =
 echo "==> ", x

proc ep2(x: float) =
 echo x

164

t(ep1, 3.1415)
t(ep2, 3.1415)

A common use case for using a function as a procedure parameter is sorting. We can use the same
sort procedure for different data types when we provide a cmp() proc that can compare that data
type.

from std/algorithm import sort

proc cmp(a, b: int): int =
 if a < b:
 -1
 elif a == b:
 0
 else:
 1

proc main =
 var a = [2, 3, 1]
 a.sort(cmp)
 for i in a:
 echo i

main()

The sort() procedure is provided by the ᴀʟɢoʀɪᴛʜᴍ module. The sort() proc accepts an array or a
sequence, and a cmp() proc that gets two parameters of the same type as the elements in the passed
array, and that returns -1, 0, or 1 as the result of the comparison. We could easily sort other data
types like strings or our custom objects by an arbitrary key, as long as we can provide a matching
cmp() procedure. For the cmp() proc it is important that it returns a well-defined result based on
the input, and when both parameters are equal, it should really return 0. If you were to swap the
return values 1 and -1 in the cmp() procedure above, you would invert the sort order.

Nested procedures and closures
While in C, all functions must be defined in the top-level scope and nesting of functions is not per
mitted, Nim allows procedures to contain other procedures. A special case occurs when the sub-
procedures access variables of the outer scope. In this case, the sub-procedure is called a closure:

proc digitScanner(s: string) =

 var pos = 0
 proc nextDigit: char =
 while pos < s.len and s[pos] notin {'0' .. '9'}:
 inc(pos)
 if pos == s.len:
 return '\x0'

165

 result = s[pos]
 inc(pos)

 var c: char
 while true:
 c = nextDigit()
 if c == '\x0':
 break
 stdout.write(c)
 stdout.write('\n')

digitScanner("ad5f2eo73q9st")

When you run this program, the output should be

52739

This program is not that easy, but when you think about it a bit, you should be able to understand it.
The task is to extract from a string all the digits and ignore the other characters.

To get the digits, we use a local proc that uses the pos variable of the enclosing proc and also
accesses the parameter s of the enclosing procedure. The closure nextDigit() checks if the position
in the string is still valid, that is, if it is still smaller than the length of the string, and also checks
whether the current character is a digit. The first check uses the standard proc len(), which returns
the length of a passed string parameter, that is, how many characters the string contains. We have
used the method call syntax here instead of using the ordinary procedure call len(s). The next check
tests if the current character is not a decimal digit. For that test we could use a series of compares
like if c == '0' or c == '1' or … or c == '9'. But to make such tests easier and faster, Nim
offers one more data type, the set type. And the notin operator tests whether a value is not con
tained in a set constant. An important point for the expression after the while statement is, that it
is processed from left to right. This fact is critical here because we have to first check if pos is still a
valid position before we can use the subscript operator [] to access the current character and test if
it is not contained in the set. If the check for the valid position would not come first, then we may
access an invalid position in the string, and we would get a runtime range error.

While the position is still valid, but the current character is not a digit, we increase the position. The
while loop can end by two conditions: Either the current character is a digit, or we have reached
the end of the string, and we have to stop. For the last case, we use a special stop mark; we return a
special character which we have entered in escape notation as '\x0'. That is a very special charac
ter, that is used in C to mark the end of strings. It is the first character in the ASCII table and has
the decimal value 0. We said earlier, that characters are encoded in 8 bits and correspond to the
unsigned integer numbers 0 up to 255. '\x0' is just a special notation for the first character, which
corresponds to the integer value 0. When the end of the string is reached, we return that character.
Otherwise, we return the current character. Remember, from the while condition, we know that
the string end is reached or the current character is a digit. As we tested for the string end before,
we can only have the case that the current character is a digit now. But can we immediately return
that character now? If we did, s[pos] would be a digit, and we would get exactly the same character
for the next proc call! Therefore, we have to move to the next character by incrementing pos before

166

we return that character. For this, the pre-declared result variable is useful. We assign the current
character to the result variable and then increase pos. As the last statement in our procedure is not
an expression but a plain inc() statement, the content of the result variable is returned. The other
while loop in the outer procedure is very simple, we just call the closure in the body of the while
loop and terminate the loop when we get the special Null character.

And finally, an example where one proc returns another procedure:

proc addN(n: int): auto = (proc(x: int): int = x + n)

let add2 = addN(2)
echo add2(7)

The output of echo() would be 9 in this case. This construct is sometimes named currying.

Anonymous procedures
In the section Module sequtils in Part III of the book, we will introduce a few functions which are
often used in the functional programming style, like map() or filter(). These functions take proce
dures as arguments, which determine how container data types are converted. We can pass a regu
lar named procedure as a second argument to functions like map() and filter, or in simple cases, we
can just pass an anonymous proc or use the ⇒ operator provided by the sᴜɢᴀʀ module:

import std/[sequtils, sugar]

proc primeFilter(x: int): bool =
 x in {3, 5, 7, 13}

var s = (0 .. 9).toSeq # @[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

echo s.filter(primeFilter) # @[3, 5, 7]
echo s.filter(proc(x: int): bool = (x and 1) == 0) # @[0, 2, 4, 6, 8]

echo s.map(proc(x: int): int = x * x) # always @[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
echo s.map(x => x * x) # from sugar module

Here, we use the toSeq() template to create our initial sequence with numbers from 0 up to 9, so we
don’t have to type all the numbers in; we will explain templates soon. Then we apply the filter()
proc to that sequence. The filter() proc expects a function, which takes an argument of the seq’s
base type and returns a boolean value, as a second argument. We can pass the named function
primeFilter(), or we can just pass an anonymous proc explicitly.

In the last two lines of our example, we use the map() function to convert the data of our sequence.
The map() function expects a proc, which takes a parameter of the seq’s base type and returns a
result of the same type, as a second argument. In the penultimate line, we specify an anonymous
proc as a parameter, while in the last line, we use the ⇒ operator from the sᴜɢᴀʀ module to specify
the actual conversion.

167

Compile-time proc execution
When a function is called with only constant arguments, the compiler can already execute it at
compile time:

func genSep(l: int): string =
 debugecho "Generating separator string"
 for i in 1 .. l:
 result.add('=')

const Sep = genSep(80) # function is executed at compile-time

echo Sep

Here, we use a function called genSep() to create a string constant at compile time. When we com
pile the above program, we get the message "Generating separator string". As that proc is not exe
cuted at program runtime, it is not included in the final executable program. Here we had to use
the debugEcho() proc instead of the ordinary echo(), because echo() is not really a pure function,
and the compiler would complain when we use echo() in a pure function. The function debugEcho()
is not really pure either, but the compiler ignores that fact, which is acceptable for debugging pur
poses. We could even make genSep() a plain proc and then use echo(), the compiler would not com
plain. But it would complain, if, for instance, we would access global variables from inside the
genSep() procedure.

Inlining procedures
Calling procedures and functions always introduces some overhead — proc parameters may need
to be put on the stack or loaded into CPU registers, some CPU or FPU registers may need to be saved,
the stack pointer and the program counter have to be updated, and finally, the instruction cache
has to be filled with new instructions.

Thus, for small procedures, the actual call to the proc may take more time than processing the code
within the proc. To avoid this additional effort, procedures and functions can be inlined. The com
piler may do this automatically for us, but we can support it by applying the {.inline.} pragma to
tiny procs.[8] For inlined procs, the code is just inserted directly at the call site. This may increase
the total executable size when the proc is used often. Therefore, we should use the inline pragma
judiciously. Another option is to compile the entire program with link-time optimization by passing
the -d:lto option to the compiler. This way, the C backend can automatically inline all proc code,
even procs from imported modules One more option is to use templates instead of tiny procs
 — templates always do a plain code substitution, so templates can behave very similar to inline
procs. We will discuss templates later. The following example shows how we can apply the inline
pragma to procedures and functions:

proc max(a, b: int): int {.inline.} =
 if a < b: b else: a

168

Note that functions from shared libraries cannot be inlined, so calling external C functions, either
directly or indirectly, can be slower than expected.

Recursion
Procedures and functions can call themselves in a repetitive manner, which is called recursion.
Clearly, there must be some condition that eventually stops the recursion. Otherwise, the procedure
would continually call itself, storing data on the stack for each call, including at least the proc
return address. Ultimately, this could lead to a stack overflow and the program would crash. In gen
eral, recursion should be used only when it significantly simplifies the algorithm. In Part V of the
book, in the section about the various sorting algorithms, we will discover some useful applications
for recursion. In most cases, an iterative algorithm is faster than a recursive one, because all the
overhead with many proc calls is avoided for iterative solutions. But sometimes recursive algo
rithms are easier to understand, or programming an iterative solution can be really complicated.

As one of the most simple algorithms, we will present here the recursive fac() function:

proc fac(i: int): int =
 if i < 2:
 1
 else:
 i * fac(i - 1)

This function should terminate, as it only calls itself again with a decreased argument. Naturally,
using recursion in this case isn’t the most efficient approach. It should be relatively straightforward
for you to convert the procedure into an iterative solution without recursion. It’s important to note
that recursive procedures cannot be inlined!

Converters
Nim’s converters are a special variant of functions that are called automatically by the compiler
when argument types do not match.

converter myIntToBool(i: int): bool =
 if i == 0:
 false
 else:
 true

proc processBool(b: bool) =
 if b:
 echo "true"
 else:
 echo "false"

var i = 7
processBool(i)

169

if i:
 echo "true"
else:
 echo "false"

With the above converter, we can pass an integer to a proc that expects a boolean parameter, and
we can even use an integer as a logical expression in an if condition in the same way as it is done in
the C language. Converters only work in a direct way, meaning automatic chaining is not sup
ported: If we have one converter from character to integer and one from int to boolean, that does
not mean that we can pass a character to a proc that expects a boolean. We would have to declare
one more converter that directly converts a character to a boolean.

Whenever we consider using converters, we should think twice — converters can be confusing,
may have unexpected effects, and could increase compile times.

You might have wondered why we wrote the above converter in such a verbose way. Well it was
done intentionally, but you are right of course, we can write it just as

converter myIntToBool(i: int): bool =
 i != 0

[1] There exist situations, where we want to pass a value parameter to a proc, but still need to modify it in the proc body. For that
case, we can make just a mutable copy in the proc body, and the copy can even have the same name as the proc parameter, like
var myPar = myPar.

[2] We learned already about pointers, and passing var parameters to procedures and functions is closely related to pointers: The
compiler passes indeed the address of the var parameter. But we do not have to care about these details.

[3] https://forum.nim-lang.org/t/4041

[4] For Nim 2.0 the address is not printed!

[5] Hint: Since Nim v1.6, the openArray type can be used as result type as well, see below.

[6] Actually, variable e is visible in this file, but not in other modules. We will discuss modules later.

[7] Of course, compilers become smarter every day, so that restriction may disappear in the future.

[8] Automatically inlining of procs from imported modules is not easy, as the C compiler backend does only inline functions from
other source code files when link-time optimization is enabled. With the inline pragma applied, the Nim compiler copies that proc
from the imported module to the module where it is actually used, so the C compiler can inline it.

170

https://forum.nim-lang.org/t/4041

Object-oriented programming and
inheritance
Object-Oriented Programming and Inheritance became very popular in the early 1990s. Although
OOP principles had already been introduced by languages such as Simula, Smalltalk, and many oth
ers, Java greatly popularized the OOP paradigm, which is also supported by most other popular lan
guages, such as C++, Ruby, and Python.

The idea of OOP is that objects and procedures working on these objects are grouped into classes,
and that classes can be extended with additional data fields and with additional procedures. In
OOP, procedures and functions are often called methods, and data fields are called members. Some
times the members are completely hidden and are accessed only by so-called getter and setter
methods. That is called encapsulation. Encapsulation allows hiding implementation details, so that
those details may change when necessary without being noticeable to users of the class, enabling
them to use the class without discerning the change. Getters and setters also help to hide internal
details and ensure that class instances are always in a consistent and valid state.

An important property of OOP is dynamic dispatch: When we create various subclasses of a com
mon parent class and define methods for all these subclasses, we can have collections of instances
from different subclasses. The compiler can then automatically ensure that the appropriate method
for each instance is always called.

A classical example is a drawing program, where we have different geometrical shapes like rectan
gles, circles, and many more. All the geometrical objects are stored in some form of a list, when we
want to draw all of them on the screen, we simply call a generic draw() method, and the compiler
ensures that the matching draw() method is called for each shape. In Nim, that might look like

type
 Shape = ref object of RootRef

 Rectangle = ref object of Shape
 x, y, width, height: float

 Circle = ref object of Shape
 x, y, radius: float

 LineSegment = ref object of Shape
 x1, y1, x2, y2: float

method draw(s: Shape) {.base.} =
 # override this base method
 quit "to override!"

method draw(r: Rectangle) =
 echo "drawing a rectangle"

method draw(r: Circle) =
 echo "drawing a circle"

171

method draw(r: LineSegment) =
 echo "drawing a line segment"

proc main =
 var l: seq[Shape]
 l.add(Rectangle(x: 0, y: 0, width: 100, height: 50))
 l.add(Circle(x: 60, y: 20, radius: 50))
 l.add(LineSegment(x1: 20, y1: 20, x2: 50, y2: 50))

 for el in l:
 draw(el)

main()

The output of that program is:

drawing a rectangle
drawing a circle
drawing a line segment

Thus, we can have a sequence of the base type, add various subtype instances, and then iterate over
the list to draw all these various subtypes. Of course, in the same way, we could do many more tasks
like moving, rotating, or storing all the objects in one call. The compiler does the right dynamic dis
patching for us; we just have to provide all the necessary methods. The need for the base method
seems to be a bit strange, some other OOP languages do not need that. The base method is marked
by a {.base.} pragma; we will discuss the purpose of pragmas later. In the example, we have used
only one level of sub-classing, but of course, we can use many levels. For example, we can again
subclass the Circle by creating a FilledCircle subclass with a color field.

The OOP coding style can be very convenient for some tasks. One important use case could be
graphical user interfaces, where the graphical elements like labels, buttons, and frames build natu
rally a hierarchical structure. Another typical use case is a drawing application, with code similar to
our basic example.

Note that the OOP style only works with ref objects, but not with value objects. The obvious reason
is that we can have collections of different subtypes stored in arrays or sequences only for ref
objects, as in arrays and sequences all element types have to have equal size. For references, that is
the case, as references are basically pointers. But different value types would have different sizes.
Linked lists would be not a better solution, as again we can not build lists with value objects.

For maximum performance, OOP code with ref objects is generally not optimal, as the dispatching
itself needs some time, and the ref objects are not contained in a single block of memory. Instead,
they are distributed throughout the RAM, which is not cache-friendly.

Inheritance for value-objects

172

type
 Person = object of RootObj # or Person {.inheritable.} = object
 name: string
 Student = object of Person
 id: int

var s1: Student
s1.name = "Alice"
s1.id = 123
var s2 = Student(name: "Bob", id: 124)

Inheritance can also be used for value objects to express some form of parent-child relation. To
enable inheritance, we have to start with the RootObj data type, or we could use the {.inheritable.}
pragma to mark the base type as inheritable. Inheritance is typically not used that much with value
objects, but it might be useful when a set of objects have some common fields.

Copying value-objects with subtypes

Assignments between parent and child value types are not often needed, but it is good to know how
these assignments behave. With the two data types, Person and Student, mentioned above, these
assignments are possible:

var s1: Student
s1.name = "Alice"
s1.id = 123
var s2 = Student(name: "Bob", id: 124)

var s: Person
s = s1 # copy only the name

#s2 = s # not allowed
s2 = Student(s) # s2.id will get default value zero
s2.id = 3
Person(s2) = s # id field will keep it value!

Remember that assignments for value types copy the content; the source object does not change. A
direct assignment like s = s1 from a subtype to a parent type copies the common fields only. On the
other hand, a direct assignment of a parent type to a subtype is not allowed as the new content of
the additional fields of the subtype would be undefined in that case. But we can use type conver
sions, to enable these types of assignments: We can convert the source to the subtype before the
content is copied — in this case, the common fields are copied, and the other fields get the default
binary zero values. Alternatively, we can convert the destination to the parent type before the copy
operation is executed. Then the common fields get copied, and the other fields of the subtype are
kept.

Actually, there may still be some issues with these types of partially copied value
objects. For instance, with Compiler version 1.9.3 (RC for 2.0), we got random con

173

tent for the field id after the statement s2 = Student(s), instead of the expected
binary zero. Furthermore, when compiling with --mm:refc, the statements s = s1
and s2 = Student(s) gave runtime errors. We will fix this example when the final
version 2.0 of the compiler is available.

Content copy of ref objects
As we already learned, assignments for reference and pointer types give us only an alias to access
the data, but the content is not copied. But in some cases, we may actually need to copy the content.
Assume that you have a CAD tool which shows various objects on the screen — lines, rectangles, cir
cles, and many more. The user should be able to copy a shape to the clipboard and paste it again
later. In principle, this is a difficult operation, as we would first have to determine the concrete run
time type of the selected entity, then allocate the destination instance, and finally copy the actual
runtime content. Nim provides the deepCopy() procedure for this purpose, which simplifies this use
case. When we use inheritance, the deepCopy() proc determines the concrete runtime type of the
object, allocates the destination memory, and copies the content. Let us try that with the geometric
ref types from the earlier example:

type
 Shape = ref object of RootRef

 Rectangle = ref object of Shape
 x, y, width, height: float

 Circle = ref object of Shape
 x, y, radius: float

 LineSegment = ref object of Shape
 x1, y1, x2, y2: float

proc main =
 var x, z: Shape
 var c = Circle(x: 60, y: 20, radius: 50)

 deepCopy(x, c)
 echo x of Circle
 Circle(x).radius = 33
 echo c[]
 echo Circle(x)[]

 deepCopy(z, x)
 echo z of Circle
 Circle(z).radius = 19
 echo Circle(x)[]
 echo Circle(z)[]

main()

174

We have defined two variables x and z of the base Shape type, and one more variable of the Circle
subtype. We pass the target parameter as the first argument, and the source parameter as the sec
ond to the deepCopy() procedure. The call to deepCopy(x, c) allocates memory for x and copies the
actual Circle content. Although x has the static Shape base type, it acquires the actual Circle type,
which we can verify using type tests with the of keyword. We can also use additional deepCopy()
calls such as deepCopy(z, x) between base types, and obtain the correct runtime types again. The
fact that this is possible is indeed a bit surprising, as serialization modules, such as the ᴊsoɴ module
from Nim’s standard library, cannot automatically determine the correct runtime types.

Note that the compiler option --deepCopy:on is currently required for ARC and ORC.

175

Other builtin data types

Tuple types
Tuples are heterogeneous container types similar to the struct type in C. As Nim’s object type cre
ates no overhead and directly corresponds to the C struct type provided we don’t use inheritance,
tuples are very similar to Nim’s objects.

The biggest advantage of tuples is that we can create anonymous tuples and Nim supports the auto
matic unpacking of tuple variables into ordinary unstructured variables.

Compared to objects, tuples do not support inheritance at all, all the tuple fields are always visible,
and different tuple types are regarded as identical when all the field names and field data types
match. Remember that two different object types are always distinct in Nim, even when the actual
type definition looks identical.

We can define tuple types in the same way as we define objects, or we can use the tuple[] construc
tor. Additionally, we can define anonymous tuples just by enclosing their field types in round
brackets. The fields of tuple types can be accessed by field names as we do with objects, or we can
access the fields with constant indices starting at zero.

type
 Move = tuple # the object definition syntax
 fro: int
 to: int
 check: bool

type Move2 = tuple[fro: int, to: int, check: bool] # equivalent tuple constructor
syntax

proc findBestNextMove(): tuple[dest: int; check: bool] =
 discard

proc findBestNextMove2(): (int, bool) =
 discard

let (dst, check) = findBestNextMove()

let (dst2, check2) = findBestNextMove2()

In the code example above, we show two equivalent ways to define a tuple type. However, we actu
ally do not use that type at all, but instead, we return an anonymous tuple from our proc, which is
a pair of an int and a bool.

Using automatic tuple unpacking and type inference, our dst and check variables get the data types
int and bool.

Tuples are also useful when a function needs to return a value and an error state, or if it might not

176

be able to return anything at all in specific cases. For reference types, we could return nil then, but
for results of value type like int or float, we may not have a well-defined error-indicating constant,
so we can return a tuple with an additional bool indicating success or error. But of course, we could
use exceptions instead, or we could use Nim’s option type instead. We will learn more about that
later.

Here are two examples that use a tuple as a proc parameter:

proc p1(x: tuple[i: int, j: int]): int =
 x.i + x.j

echo p1((7, 7))

proc p2(x: (int, int)): int =
 x[0] + x[1]

echo p2((7, 7))
echo p2 (7, 7)

The proc p1() creates a tuple type using the tuple constructor syntax with named fields, which
allows us to access the fields by their names in the procedure body. On the other hand, proc p2()
uses an anonymous tuple and thus has to access the fields by constant indices. Both procedures are
invoked with an anonymous tuple parameter. The last line of above example code uses the com
mand invocation syntax.

Object variants
Nim’s object variants, sometimes also called sum types or abstract data types (ADTs), are advanced
and type-safe variants of the union type known from C. The basic idea is that we can use value types
that can store similar but not identical data as elements in containers. Dynamically typed languages
like Ruby or Python allow that of course, and we can do it in Nim with ref types and inheritance
too, as we showed in a previous section with our Shape base type and various geometric shapes. We
could store these ref types in arrays, sequences or linked lists and use dynamic dispatch for pro
cessing the various subtypes. While this is convenient, it doesn’t provide maximum performance
due to dynamic dispatch at runtime and inefficient cache use. Therefore, we might want a value
type with different content, allowing us to store all value types in a seq with all entities residing in a
compact memory block for efficient cache use.

type
 ShapeKind = enum
 line, rect, circ

 Shape = object
 visible: bool
 case kind: ShapeKind
 of line:
 x1, y1, x2, y2: float

177

 of rect:
 x, y, width, height: float
 of circ:
 x0, y0, radius: float

proc draw(el: Shape) =
 if el.kind == line:
 echo "process line segment"
 elif el.kind == rect:
 echo "process rectangle"
 elif el.kind == circ:
 echo "process circle"
 else:
 echo "unknown shape"

var
 s: seq[Shape]
s.add(Shape(kind: circ, x0: 0, y0:0, radius: 100, visible: true))
for el in s:
 draw(el)

Objects variants can have common fields like the boolean state visible above, but the other fields
are not allowed to have the same names. As a result, we used x0 and y0 as the names of the center
coordinates in the circle variant.

As you can see, we can store all the different object variants as value objects in a sequence and
iterate over it. Note that object variants may waste some storage, as all variants are silently
enlarged to have the exact same size so that all variant types can be stored in arrays or sequences
and can be passed as proc parameters in the same way to the same procedure. For more details
about object variants please consult the Nim language manual.

178

Iterators
In the section For loops and iterators, we used a for loop to iterate over the individual characters of
a string. For loops are useful for various iteration purposes, e.g. to iterate over container types like
strings, arrays, and sequences, or over a numeric range, and other countable entities. We could do
the same with a while loop, but using a for loop is often more convenient and less error-
prone — we do not have to care for increasing a loop variable and for the stop condition.

Nim’s for loops are built on iterators; that is, whenever a for loop is executed, an iterator is used
under the hood. Some iterators are used explicitly in for loops, e.g. countup() of Nim’s standard
library, others like items() or pairs() are executed implicitly when no explicit iterator name is speci
fied.

The creation and use of iterators is very easy in Nim. Before discussing all the details and some
restrictions of iterators, as well as the important differences between inline and closure iterators,
let’s look at a small example:

We have already used some of Nim’s standard iterators to iterate over the characters of a string or
the content of a sequence.

In an earlier section of the book, we demonstrated a procedure that extracts all the decimal digits
from a string. We can accomplish the same task using an iterator:

iterator decDigits(s: string): char =
 var pos = 0
 while pos < s.len:
 if s[pos] in {'0' .. '9'}:
 yield(s[pos])
 inc(pos)

for d in decDigits("df4j6dr78sd31tz"):
 stdout.write(d)
stdout.write('\n')

The definition of an iterator is very similar to the definition of a procedure or function. However,
while a function returns a result only once to the caller, an iterator uses the yield statement to give
data back to the call site multiple times, instead of returning just once.

Whenever a yield statement is reached in the body of the iterator, the yielded data is bound to the
for loop variable(s), the body of the for loop is executed, and at the end of the for loop body, control
returns to the iterator. In other words, execution continues directly after the yield statement. The
iterator’s local variables and execution state are automatically saved between calls. The iteration
process continues until the end of the body of the iterator declaration is reached and the iterator
terminates.

Iterators are used in for loops to iterate over containers, ranges, or other data. After the for key
word, we specify one or more arbitrary variable names, which we then can use in the body of the
for loop to access the yielded value(s). The data type of this iteration variable(s) is inferred from the

179

iterator’s return type, and its scope is limited to the body of the for loop.

Nim’s standard library defines iterators named items() and pairs() for container types like strings,
arrays, and sequences. Items() is the default name when a for loop with only one variable is used,
and pairs() is the default name when two variables are used, such as the index position and the
character when iterating over a string.

In Nim’s standard library, you may find items() and pairs() iterators like these two:

iterator items(a: string): char =
 var i = 0
 while i < len(a):
 yield a[i]
 inc(i)

iterator pairs(a: string): tuple[key: int, val: char] =
 var i = 0
 while i < len(a):
 yield (i, a[i])
 inc(i)

var s = "Nim is nice."
for c in items(s):
 stdout.write(c, '*')
echo ""
for i, c in pairs(s):
 echo i, ": ", c

In the example above, we specified the iterator names items() and pairs() explicitly in the for state
ment, but as these names are the defaults, we can just write for c in s: and for i, c in s:.

The two iterators in the example code from above use a value type as an argument and return sin
gle characters as a value type. This way, we canot modify the string content. When we intend to
modify the content of a container by use of an iterator, we have to pass the container as a var
parameter and return the elements as var also. By convention, for iterating over mutable contain
ers the iterator names mitems() and mpairs() are used, where the leading m stands for mutable. We
have to specify these names explicitly:

iterator mitems(a: var string): var char =
 var i = 0
 while i < len(a):
 yield a[i]
 inc(i)

iterator mpairs(a: var string): tuple[key: int, val: var char] =
 var i = 0
 while i < len(a):
 yield (i, a[i])
 inc(i)

180

from std/strutils import toLowerAscii
var s = "NIM"
for i, c in mpairs(s):
 if i > 0:
 c = toLowerAscii(c)
echo s # Nim

Whenever we iterate over a container, we should not delete, insert, or append elements to the con
tainer, as that may confuse the loop inside the iterator body. Iterators of Nim’s standard library
check the length of the container and generate an exception when the length changes during the
iteration.

Nim differentiates between inline and closure iterators. When a for loop uses an inline iterator,
then the actual iterator loop is inlined in the for loop body in a way that for each yield statement
in the iterator body, the body of the for loop is executed. Actually, the for c in items(s): std
out.write(c, '*') in our example from above is rewritten by the compiler into a code block like

var i = 0
while i < len(a):
 var c = a[i]
 echo c, '*'
 inc(i)

That is, the body of the for loop is inlined into the iterator’s loop.

This results in very fast code with no overhead; however, similar to the use of templates, this
increases the total code size of the final executable. In fact, when the iterator uses multiple yield
statements, the code of the body of the for loop is inserted for each yield statement.

Inline iterators are currently the default iterator type, so the iterators of the examples above are
all inline iterators.

Closure iterators behave more like procedures; the iterator is actually invoked, which costs some
performance. We can use all the iterators of the examples from above as closure iterators by
applying the closure pragma as in iterator items(a: string): char {.closure.} =.

Closure iterators behave like objects; we can assign instances of closure iterators to variables and
then call the instances explicitly:

iterator myCounter(a, b: int): int {.closure.} =
 var i = a
 while i < b:
 yield i
 inc(i)

for x in myCounter(3, 5): # ordinary use of the operator
 echo x

181

echo "---"
var counter = myCounter # use of an iterator instance
while true:
 echo counter(5, 7)
 if counter.finished:
 break

which gives us this output:

3
4

5
6
0

Here, we have used the finished() function to check if the iterator is done.

In fact, finished() returns true only when the iterator has already failed to yield a valid value, not
when the last valid value was yielded. That is why, in the example above, the last value we get is the
invalid value zero.

We can avoid this behavior when we rewrite the loop as

var counter2 = myCounter
while true:
 let v = counter2(5, 7)
 if counter2.finished:
 break # v is invalid
 echo v

Closure iterators are resumable functions, so one has to provide the arguments to every call. To get
around this limitation, one can capture the parameters of an outer factory proc:[1]

proc mycount(a, b: int): iterator (): int =
 result = iterator (): int =
 var i = a
 while i < b:
 yield i
 inc(i)

var c1 = mycount(5, 7)
for i in c1():
 echo i

echo "---"

182

var c2 = mycount(2, 5)
while true:
 let v = c2()
 if c2.finished:
 break # v is invalid
 echo v

In this example from the Nim language manual, the proc mycount() captures the bound for the
counter. When we compile and run the code above, we get:

5
6

2
3
4

At the end of this section, we will list some properties of iterators: Iterators have their own name
space, so we can freely use the same names for procs and iterators. Iterators have no predefined
result variable and do not support recursion. Inline iterators can be used only inside for loops and
cannot be forward declared because the compiler must be able to inline an iterator. (This restric
tion will be gone in a future version of the compiler.) Closure iterators are not supported by the JS
backend, and cannot be executed at compile time. Inline iterators are second-class citizens and can
be passed as parameters only to other inlining code facilities like templates, macros, and other
inline iterators. In contrast, a closure iterator can be passed around more freely.

[1] https://nim-lang.org/docs/manual.html#iterators-and-the-for-statement-firstminusclass-iterators

183

https://nim-lang.org/docs/manual.html#iterators-and-the-for-statement-firstminusclass-iterators

Templates

Nim templates are very different from C++ templates! In C++ templates are used for generic
programming — a style of computer programming in which algorithms are written in terms
of types to-be-specified-later that are then instantiated when needed for specific types pro
vided as parameters.[1] This is referred to as generics in Nim and other programming lan
guages. We learned about Nim’s generics earlier in this book.

Nim templates are a simple, parameterized code substitution mechanism, and are used similarly
as procedures. The syntax to invoke a template is the same as calling a procedure. However, while
procedures build a single block of code that is then called multiple times, templates work more like
C macros, performing a (textual) code substitution. Wherever we invoke a template, the template
source code is inserted at the call site. In this way, Nim templates have indeed some similarities to
C macros. But while C macros are executed by the C pre-processor and can do only plain source text
substitutions, Nim templates operate on Nim’s abstract syntax trees, are processed in the seman
tics pass of the compiler, integrate well with the rest of the language, and share none of C’s pre
processor macros flaws.

In some way, Nim templates are a simplified application of Nim’s powerful macro and meta-pro
gramming system, which we will discuss in detail in Part VI of the book.

In C we could use the "#define" preprocessor directive to define two simple C macros.

#define PI 3.1416
#define SQR(x) (x)*(x)

The C pre-processor would then replace the symbol PI in the C source code with the float literal
3.1416 before the code is processed by the C compiler. And as the C pre-processor can recognize
some simple form of parameters, it would replace SQR(a + b) with (a+b)*(a+b).

In Nim we would define a const for PI and use a generic proc or a template for SQR():

const PI = 3.1416
proc sqr1[T](x: T): T = x * x
template sqr2(x: typed): typed = x * x

Here the sqr2() template uses the special typed parameter, which specifies that the parameter has
a well-defined type in the template body, but that arbitrary data types are accepted. So sqr1() and
sqr2() would work for all numeric types and also for other data types for which we have defined a *
operation. When there is no * operator defined for the passed data type, the compiler will give an
error message.

Nim templates, like procs, accept all of Nim’s ordinary data types, in addition to the abstract meta-

184

types typed and untyped. The abstract data types typed and untyped can be used only for the types
of template and macro parameters, but not for parameters of procedures, functions, iterators, or
to define variables.

We will explain the differences between typed and untyped in detail later in this section. The short
version of the explanation is that typed template parameters must have a well-defined data type
when we pass them to the template, while untyped parameters can also be passed as undefined
symbolic names.

So we can in principle replace each procedure or function definition with a template. The impor
tant difference between procs and templates is that ordinary procs are instantiated only once,
generic procs are instantiated for each data type with which they are used, while templates are
instantiated for each invocation of the template. The compiler creates for each defined proc some
machine code, which is executed whenever the procedure is called. But for templates, the compiler
does some code substitution — the source code of the template is inserted where the template is
invoked. This avoids the need for an actual jump to a different machine code block when a proce
dure is called but increases the total code size for each use of a template. So we would typically
avoid frequently used templates that contain a lot of code.

For each ordinary proc, one block of machine code instructions is generated, and when the proc is
called, program execution has to jump to this block, and back when the procedure execution is
done. This jumping involves some minimal overhead, which is noticeable for tiny procs called fre
quently. To avoid this overhead, we may either use a templates or inlined procs, which we dis
cussed in the previous section. The proc inlining can be done automatically by the compiler when
the procedure is defined in the source code file where it is used, or when we mark the proc with
the inline pragma. Additionally, when we compile our program with -d:lto, the compiler can inline
all procedures and functions. Generally, the compiler should know well when inlining makes sense,
so in most cases, it doesn’t make much sense to just use templates instead of (small) procs merely
to avoid the [proc} call overhead.

Templates can be used as a form of alias. Sometimes we have nested data structures, and would
like to have a shorter alias for the access of fields:

type
 Point = object
 x, y: int

 Circle = object
 center: Point

template x(c: Circle): int = c.center.x

template `x=`(c: var Circle; v: int) = c.center.x = v

var a, b: Circle

a.center.x = 7
echo a.center.x

185

b.x = 7
echo b.x

The two templates simplify the access of field x, and as templates are pure code substitution, their
use costs no performance. Since version 1.6, Nim also has the with macro, which can be used to
save some typing. Note that in the second template, we have called the second int parameter
v — calling them x would give some trouble:

Error: in expression 'b.center.7': identifier expected, but found '7'

Nim’s sʏsᴛᴇᴍ module uses templates to define some operators like

template `!=` (a, b: untyped): untyped =
 not (a == b)

This way != is always the opposite of ==, so when we define the == operator for our own custom data
types, != is available for free.

In some situations, using templates instead of procs can avoid some overhead. Let us investigate a
log() template that can print messages to stdout when a global boolean constant is set to true:

const
 debug = true

template log(msg: string) =
 if debug: stdout.writeLine(msg)

var
 x = 4
log("x has the value: " & $x)

Here, log() is called with the constructed argument ("x has the value: " & $x), which implies a
string concatenation operation at runtime. As we use a template, the invocation of log("x has the
value: " & $x) is actually replaced by the compiler with code like

 if debug: stdout.writeLine("x has the value: " & $x)

So, when debug is set to false, absolutely no code is generated. For an ordinary, non-inlined proce
dure, the situation is different: the expensive string concatenation operation would always have to
be performed, but the log() proc would immediately return if debug is false. What exactly would
happen when log() is an inlined procedure may depend on the actually used compiler backend. You
may wonder if, inside our template from above, we should have used "when" instead of "if". The
use of "when" should be possible, as debug is a compile-time constant, but we assume that the use of
"if" generates the same machine code for this use case.

186

Note that the delayed (lazy) parameter evaluation for template parameters can have disadvan
tages. When we modify the log() template like this:

template log(msg: string) =
 for i in 0 .. 2:
 stdout.writeLine(msg)

var x = 4
log("x has the value: " & $x)

the expensive string concatenation operation would be done in principle three times in the tem
plate body.[2] In contrast, for a procedure, the already evaluated parameter would be passed. So,
when we access a parameter multiple times inside a template, it can make sense to assign the para
meter to a local variable and then use only that variable.

Templates can inject entities defined in the template body into the surrounding scope. By default,
variables defined in the template body are not injected in the surrounding scope, but procs are:

template gen =
 var a: int
 proc maxx(a, b: int): int =
 if a > b: a else: b

gen()
echo maxx(2, 3)
echo a

The call echo maxx(2, 3) compiles and works, while echo a complains about an undefined symbol.

A very special property of templates and macros is that we can pass code blocks to them when we
use untyped for the type of the last parameter.

template withFile(f: untyped; filename: string; actions: untyped) =
 var f: File
 if open(f, filename, fmWrite):
 actions
 close(f)

withFile(myTextFile, "thisIsReallyNotAnExistingFileWithImportantContent.txt"):
 myTextFile.writeLine("line 1")
 myTextFile.writeLine("line 2")

The template withFile() from the above example has three parameters — a parameter f of untyped
type, a filename of string type, and as the last parameter one more untyped parameter, which we
called actions. For this last untyped actions parameter, we can pass an indented code block.

When we invoke the withFile() template, we pass the first two parameters in the well-known way

187

by putting them in a parameter list enclosed in round brackets. However, instead of also passing
the final actions parameter in this manner, we put a colon after the parameter list and pass the fol
lowing indented code block as the last untyped parameter. In the body of the above template, we
have an open() call which opens a file with the specified filename and the fmWrite mode. The tem
plate then executes the passed code block and finally closes the file. The first parameter of our
withFile() template has also a special property: As we use untyped for the f parameter, we can
pass the still undefined symbol myTextFile to the template. In the template body, this symbol is
used as a variable name, and our two writeLine() proc calls can use it to refer to the file variable.

As Nim templates are hygienic, the instance of the file variable created in the body of our template
can be used by the passed code block, but it actually exists only in the template and does not pol
lute the global namespace of our program.

By passing an integer and a code block to a template, we can easily create a function similar to the
times() construct known from Ruby, to execute a code block n times:

template times(n: int; actions: untyped) =
 var i = n
 while i > 0:
 dec(i)
 actions

var x = 0.0
3.times:
 x += 2.0
 echo x, " ", x * x

Of course, instead of 3.times:, we could have simply used for _ in 1 .. 3:.

We can also use templates to create new procs. An example is lifting procedures like math.sqrt()
that accepts a scalar parameter and returns a scalar value, to work with arrays and sequences. The
following example is taken from the official tut2 tutorial:

from std/math import sqrt

template liftScalarProc(fname) =
 proc fname[T](x: openarray[T]): auto =
 var temp: T
 type outType = typeof(fname(temp))
 result = newSeq[outType](x.len)
 for i in 0 .. x.high:
 result[i] = fname(x[i])

liftScalarProc(sqrt) # make sqrt() work for sequences
echo sqrt(@[4.0, 16.0, 25.0, 36.0]) # => @[2.0, 4.0, 5.0, 6.0]

The template called liftScalarProc() creates a generic proc that accepts an openArray[T] as a para
meter and returns a seq[T]. Well, we should be able to understand the basic ideas used in that code,

188

but it is still fascinating that it really works.

Typed vs untyped parameters
Parameters passed to templates can be of any data type that we can use for procs, including spe
cial types such as openarray, varargs and typedesc. Additionally, we can use the symbols untyped and
typed as parameter types.

The typedesc type can be used to pass type information to the template, e.g. when we want to cre
ate a variable of a special data type. The "meta-types" typed and untyped are used when we want to
create a form of generic template that can accept different data types. In reality, the distinction
between typed and untyped parameters is not as challenging or crucial for templates as it is for
macros. In most cases, it’s evident whether we need the typed or untyped parameter type for a
template, or if both will work fine. We discuss the differences between typed and untyped in
much more detail in Part VI of the book, when we discuss macros and meta-programming.

The following example demonstrates the use of the untyped and the typedesc parameter:

template declareInt(n: untyped) =
 var n: int

declareInt(i)
i = 3
echo i

template declareVar(n: untyped; t: typedesc) =
 var n: t

declareVar(x, float)
x = 3.0
echo x

Since the parameter n is untyped, the compiler allows us to pass an undefined symbol to the tem
plate. If we changed the parameter type to typed, the compiler would complain with a message like
"Error: undeclared identifier: i".

For the second template, called declareVar(), we use an additional parameter of typedesc type so
that the template can create a variable of the passed data type for us.

Citing the manual: "An untyped parameter means that symbol lookups and type resolution is
not performed before the expression is passed to the template. This means that undeclared
identifiers, for example, can be passed to the template. A template where every parameter is
untyped is called an immediate template. For historical reasons, templates can be explicitly
annotated with an immediate pragma and then these templates do not take part in overload
ing resolution and the parameters' types are ignored by the compiler. Explicit immediate
templates are now deprecated. For historical reasons, stmt was an alias for typed and expr
was an alias for untyped, but they are removed."

189

Earlier, we said that Nim’s templates are hygienic, so you may wonder why the variable declared
inside of the template is visible outside. Actually, this is only the case because we pass the symbol n
as a template parameter. An ordinary declaration like var h: int would create a variable that is
only visible inside the template body; it could not be used after invoking the template. We can use
the inject pragma to make such ordinary variables visible outside of templates. For more details,
please consult the language manual.

Passing a code block to a template
In the withFile() example above, we demonstrated that a block of statements can be passed as the
last argument to a template using the special : syntax. To demonstrate the difference between code
blocks of typed and untyped data types, we will cite the Nim language manual. See https://nim-
lang.org/docs/manual.html#templates-passing-a-code-block-to-a-template:

Usually, to pass a block of code to a template, the parameter that accepts the block needs to be of
type untyped. Because symbol lookups are then delayed until template instantiation time:

template t(body: typed) =
 proc p = echo "hey"
 block:
 body

t:
 p() # fails with 'undeclared identifier: p'

The above code fails with the error message that p is not declared. The reason for this is that the p()
body is type-checked before getting passed to the body parameter, and type-checking in Nim
implies symbol lookups. The same code works with untyped as the passed body is not required to
be type-checked:

template t(body: untyped) =
 proc p = echo "hey"
 block:
 body

t:
 p() # compiles

Passing operators to templates
Another use case for templates with untyped parameters involves the generation of math opera
tions for custom data types. Let us assume that we have created a custom Vector object, for which
we have to define addition and subtraction operations. Instead of writing code for both cases, we
can use a template and pass the actual math operator as untyped parameter:

type

190

https://nim-lang.org/docs/manual.html#templates-passing-a-code-block-to-a-template
https://nim-lang.org/docs/manual.html#templates-passing-a-code-block-to-a-template

 Vector = object
 x, y, z: int

template genOp(op: untyped) =
 proc `op`(a, b: Vector): Vector =
 Vector(x: `op`(a.x, b.x), y: `op`(a.y, b.y), z: `op`(a.z, b.z))

genOp(`+`)
genOp(`-`)

echo `+`(2, 3) # 5

var p = Vector(x: 1, y: 1, z: 1)
var p2 = p + p
echo p2 # (x: 2, y: 2, z: 2)

This works because mathematical operations like 1+2 can be written as `+`(1, 2), and such an oper
ator can be passed as an untyped parameter to a template.

Advanced template use
For more advanced template topics, you should consult the Nim language manual.

This includes the symbol binding rules, identifier construction in templates, lookup rules for tem
plate parameters, hygiene in templates, use of the inject pragma, and limitations of the method-
call-syntax.

All this is explained well in the language manual, so there’s no need to repeat it here. It might be
more beneficial to consult the manual when you actually encounter problems with the default
behavior of templates in unique situations.

[1] https://en.wikipedia.org/wiki/Generic_programming

[2] In principle, the compiler may always optimize that.

191

https://en.wikipedia.org/wiki/Generic_programming

Casts and type conversions
While we have various types of casts in C++, Nim only supports one type of cast and type conver
sions. In Nim, cast simply reinterprets the same bit pattern for another data type. For example, the
boolean value false is internally encoded as a byte with all bits cleared, while true is encoded as a
byte with all bits cleared except for the least significant one. We could cast a bool to an int8 of the
same size and receive a number with a decimal value of 0 or 1. Casting is not a real operation at all,
as nothing is really done. We watch the same bit pattern, just from a different perspective. But cast
ing is dangerous, it violates the safe type system of the language, and it can go very wrong: Can we
cast between float64 and int64? Well, they have the same size, and both are numbers. We can cast,
but the result would be far away from what we may expect. While int64 has a well-known and sim
ple value encoding, where the rightmost bit stands for 2^0, the next bit for 2^1, and so forth, the
encoding of floating-point numbers is much more complex and doesn’t follow such a simple
scheme. In floats, some bits represent the so-called mantissa and some bits represent the exponent.
When we cast, we may again get a number, but the value is not easily predictable. We have to be
very careful when we cast between types of different sizes. Nim may permit that, but we have to
think about what may really happen. When we cast between a bool and an int64, in one direction 7
bytes have to be ignored, and in the other direction, padding is necessary for the 7 missing bytes.
We perform a cast by writing the desired type in square brackets after the keyword cast, followed
by parentheses enclosing the source variable:

var i: uint8 = cast[uint8](myBoolVar)

Totally different from casting is type conversion. We can convert integers to floating-point numbers
without problems, for the conversion we use the type like a proc call, that is int(myfloat) or
float(myInt) — of course, we could use method call syntax like myInt.float instead. Type conversion
requires some effort from the CPU, but most advanced CPUs should have fast instructions for basic
conversions.

Nim generally only allows type conversions that involve not too much effort. So we should not
expect something like var i: string ="1234"; echo i.int * 7 to be available. Such a conversion is
expensive, at runtime it costs many CPU cycles, as we would have to extract the digits, multiply by
their weight and sum them up. For that operation, functions like parseInt(), which accept a string
as an argument and return an int, are available from the Nim standard library. There exist differ
ent variants of parseInt(), one may raise exceptions for invalid input, and the other may return a
boolean.

192

Bitwise operations
All systems programming languages, and most other programming languages, have support for bit
manipulation operations, which includes querying and setting individual bits of variables, and
combining the bits of two or more variables. As the CPU hardware supports these operations
directly, these operations are very efficient. In the C programming language, operators like &, |, <<,
>>, ^, ~ are used for bit-wise and and or operations, for shifting all the bits of a variable to the left or
to the right, and for the process of inverting all the bits and for applying the exclusive-or operation
on the bits of two operands. Actually, for the right shift operation, we have to distinguish between a
logical and an arithmetic shift: For a logical shift the bit pattern is only moved right, and the left
most bit is always cleared. But for an arithmetic shift, the leftmost bit may stay set when it was set
before, indicating a negative number in the case of a numeric variable. In C the actual behavior for
a >> shift right operation can be implementation-dependent.

Nim prefers to use textual operators instead of cryptic symbols, so the logical operators and, or and
not have overloads to work on the actual bit pattern of integer variables instead of on boolean val
ues, and for logical left and right shifts the operators are called shr and shl. For shl, bits shifted in
from the right are always cleared, while shr shifts in cleared bits from the left for unsigned argu
ments, but preserves the leftmost set bit for signed arguments, which corresponds to an arithmetic
shift operation. The Nim standard library also provides an ashr() function for arithmetic shifts, but
that one seems to be a legacy.

from std/strutils import toBin
var i = 1.int8 # 0b00000001
i = i shl 7 # 0b10000000
i = i shr 2 # 0b11100000 as sign is preserved
echo i.toBin(8)
var j: uint8 = 0b11111111
j = j shr 2 # 0b00111111, div 4 for unsigned int
echo j.int8.toBin(8)

The bit-wise operators and, or, and not behave very similarly to the boolean ones, but the operation
is performed on all the bit values instead of just two boolean operands. The shift operators require
a right-hand operand specifying how many positions the bit pattern of the integer variable on the
left should be moved. As the shr operator preserves the leftmost sign bit for each individual shift
when applied to a signed integer argument, we get a value with the three leftmost bits set in the
above example. For showing the bit pattern, we used the toBin() function in the above code, the sec
ond parameter determines how many bits are actually printed. Remember that for unsigned num
bers, shifting left (shl) by one position is equivalent to multiplying by two, and shifting right (shr)
by one position is equivalent to dividing by two. Negative numbers are not allowed for the number
of bits to shift. Although i = i shl -1 does compile, the result is always zero. For all the shift opera
tions, performing n shifts each by one position would yield the same result as a single shift by n
positions. For most modern CPU hardware, all the bit shifting operations are very fast and generally
take only one clock cycle, independent of how many positions we move the bit pattern and inde
pendent of whether it is a logical or an arithmetic shift operation.

We can use the and and or operators to extract single bits or set single bits:

193

var a = 3 # two rightmost bits, at position 0 and 1 are set
var b = a and 2 # extract bit 1, so b gets the value 2
b = a and 4 # extract bit 3, which is unset, so result is 0
b = a or (4 + 8) # result is \b00001111, decimal 15

This information should suffice for understanding the most basic bit operations. We may not use
these operations frequently, but it’s important to be aware of their existence. The overloading of the
and, or, and not operators for signed and unsigned integer numbers may appear convenient, but it
can sometimes lead to confusion when we intend to perform boolean operations and instead oper
ate on bit patterns. It was suggested to call the operators bitand, bitor, and bitnot instead, and
indeed the ʙɪᴛoᴘs module of Nim’s standard library defines operators with these names and pro
vides additional, more useful bit operations, including counting the number of set bits in a variable
or determining the number of leading zero bits. These operations are not needed that frequently,
but sometimes they can be very useful, and they are supported by fast CPU instructions on modern
PC hardware. Note that while we have shown these bit operations on integer numbers only, you
can always cast other data types to integers and then apply these operations as well.

194

Exceptions
When we execute our program code, sometimes things can go wrong: we may be unable to open a
file, encounter an unexpected division by zero or an overflow, or receive invalid user input. There
are various strategies to handle such situations. One is to terminate our program. We may do that
by a plain assert() or quit() statement. If we have absolutely no idea how to recover from an error,
then that is typically our best option. The user can restart the program, or the program can be
restarted by a supervisor program. For more predictable errors, some form of error indicator can
be a better solution. For example, a parseInt() procedure may return a boolean value indicating
success. As we have to return the numerical result for success as well, the parseInt() proc can
return a tuple or can use a var parameter in which the actual integer value is returned. Whenever
a procedure returns a reference, the return value nil can be used to indicate some form of error.
Alternatively, we may use Nim’s Option type to allow the caller to detect if a returned value is
invalid.

Another popular strategy to handle error states is the use of Exceptions. If an invalid operation is
detected somewhere in the code path, that code can raise an Exception to indicate that a serious
error has occurred.

This raised error might be handled elsewhere in the program. If it is not handled at all, the raised
Exception will finally cause a program termination.

Let us start again with a small example:

proc charToInt(c: char): int =
 if c in {'0' .. '9'}:
 return ord(c) - ord('0')
 raise newException(OSError, "parse error")

proc main =
 while true:
 stdout.write("Please enter a single decimal digit: ")
 let s = stdin.readline
 try:
 echo "Fine, the number is: ", charToInt(s[0])
 except:
 if s.len == 0:
 break
 echo "Try again"

main()

The charToInt() proc raises an Exception when the passed character is not a decimal digit. As the
main program knows that charToInt() may raise an Exception, it encloses the charToInt() call in a
try/except block: If code in the try block raises an Exception, then the program execution proceeds
in the except: block.

The use of Exceptions seems to be a good idea to handle certain of rare errors, and most modern

195

programming languages support some form of raising and catching Exceptions. However, there has
also been some criticism: using exceptions and catching them with try/except blocks can disrupt the
regular control flow of the program, making it difficult to reason about all possible code paths. For
this reason, the popular Go programming language was initially released with Exception handling
explicitly omitted, with the developers arguing that it obfuscated control flow. In fact, the Nim com
piler can help with the management of all exceptions involved by using its effect system, which is
described in detail in the Nim language manual and which we will briefly discuss in the next sec
tion. Nim’s Exception tracking is part of Nim’s effect system — we can annotate each proc with all
the various types of Exceptions that it may raise, and the compiler can help us with this annotation
and verify that it is correct.

Defects and catchable errors
Nim’s strategy for the handling of Exceptions has changed a bit in the last few years. Nim differenti
ates now between catchable errors, and defects, which may not be catchable, and are considered to
be programming bugs. The prototype of a defect is the DivByZeroDefect. If we do an integer divi
sion by zero, then the most common CPUs will generate a signal and the OS will abort our program
with SIGFPE. So to prevent the program abort by a possible DivByZeroDefect, we have always to
ensure that for an integer division, the denominator is not zero, or we let the Nim compiler do this
check by compiling with the option --checks:on, which costs performance and increases code size,
as a check instruction is added for each division.

In Nim, all Exceptions types are objects that inherit from the Exception type of the sʏsᴛᴇᴍ module
and have public name and msg fields of string type.

Exceptions that indicate programming bugs inherit from system.Defect and can be uncatchable, as
they can be mapped to operations that terminate the whole process, like a quit, trap, or exit opera
tion. Exceptions that indicate other, catchable runtime errors inherit from system.CatchableError.

These types are further subclassed into Defects like OverflowDefect or OutOfMemDefect, and Errors
like ValueError or IOError.

Raise statement
An Exception is raised using the raise statement. The raise statement expects a heap-allocated ref
erence to an Exception object, as the lifetime of the Exception instance is unknown. Generally, we
use the newException() template to create the Exception instance and set the msg field like

raise newException(IOError, "IO failed")

In principle, we could also create the Exception instance like

var
 e: ref OSError
new(e)
e.msg = "the request to the OS failed"

196

raise e

If raise is invoked without an Exception argument, the current Exception is re-raised. The
ReraiseDefect Exception is raised if there is no Exception to re-raise. It follows that the raise state
ment always raises an Exception. Reraising an Exception can be useful in an except block (see
below) when the actual Exception type cannot be handled.

Custom exceptions
Instead of raising one of the predefined Exceptions from the sʏsᴛᴇᴍ module, we can also create our
own variants and then raise them:

type
 LoadError = object of Exception

Try statement
In the Nim language manual, we have an example like this one:

import std/strutils
var
 f: File
if f.open("numbers.txt"):
 try:
 let a = f.readLine
 let b = f.readLine
 echo "sum: ", parseInt(a) + parseInt(b)
 except OverflowDefect:
 echo "overflow!"
 except ValueError, IOError:
 echo "value or IO error!"
 except:
 echo "Unknown exception!"
 finally:
 close(f)

The code tries to read two strings from a text file that is assumed to contain numeric data and to
add them after conversion to integer numbers. Three errors may occur: The reading of the strings,
the conversion to integers, or the addition may fail, with the last potentially causing an overflow. To
catch the possible errors, we use the try/except/finally construct. The keywords try, except, and
finally are followed by a colon, and each keyword marks the start of a corresponding block of
instructions — after the except keyword we can list the Error and Defect types for which the follow
ing code block should be executed.

The statements in the try block are executed in sequential order until an Exception is raised. If an
Exception is raised and the Exception type matched any listed in an except clause, the correspond

197

ing statements are executed. If no Exception types match and an except clause with no listed Excep
tion types is specified, the following code block is executed. The statements following the except
clauses are called Exception handlers. If there is a finally clause, it is always executed after the
Exception handlers.

An Exception is "consumed" in an Exception handler. However, an Exception handler may raise
another Exception or re-raise the current one, which then may be caught elsewhere or generate a
program termination if it remains uncaught. If an Exception is not handled, it is propagated through
the call stack. This means that often the rest of the procedure - that is not within a finally clause - is
not executed (if an Exception occurs).

Try expressions
Just as we can use the if keyword as an expression, we can do the same with the try keyword. The
data types of the try and the except branches have to be compatible in this case, and an optional
finally branch has to return nothing (void):

from std/strutils import parseInt, parseFloat
let x = try: parseFloat("3.14")
 except: NaN
 finally: echo "well we tried." # always executed!
echo x # 3.14

let i = (try: parseInt("133a") except: -1)
echo i # -1

Except clauses
In an except block, we can use the function getCurrentException() to get the raised Exception, or
getCurrentExceptionMsg() to get only the error message. Or, we can access the current Exception in
an except block using the as keyword, as shown below:

try:
 # ...
except IOError as e:
 # Now use "e"
 echo "I/O error: ", e.msg, " (", e.name, ')'

Imported exceptions
It is possible to raise and catch imported C++ exceptions. For a detailed example, see the Nim lan
guage manual: https://nim-lang.org/docs/manual.html#exception-handling-imported-exceptions

198

https://nim-lang.org/docs/manual.html#exception-handling-imported-exceptions

Defer statement
The defer statement can be used to ensure that special actions like closing a file or freeing
resources are always executed. The defer statement is transformed by the compiler into a
try/finally construct.

proc main =
 var f = open("numbers.txt", fmWrite)
 defer: close(f)
 f.write "abc"
 f.write "def"

Is rewritten to:

proc main =
 var f = open("numbers.txt", fmWrite)
 try:
 f.write "abc"
 f.write "def"
 finally:
 close(f)

Using defer is more concise, but try/finally makes it more obvious what is happening, so some peo
ple recommend not using the defer statement. Actually, tasks like closing files should soon be per
formed by Nim’s destructors automatically, so defer may get deprecated.

References:

• https://forum.nim-lang.org/t/7514

• https://en.wikipedia.org/wiki/Exception_handling

199

https://forum.nim-lang.org/t/7514
https://en.wikipedia.org/wiki/Exception_handling

Destructors
Destructors and finalizers are used for automatic resource management. For example, files can be
closed automatically when a file variable goes out of scope. Similarly, when we create high-level
Nim bindings to C libraries, we can use finalizers or destructors to deallocate entities of the C
libraries when a corresponding Nim (proxy) object is freed. Libraries like the Gintro GTK bindings
make use of this.

Finalizers are procedures that can be passed as an optional second parameter to the system new()
proc. That way, the finalizer proc is attached to the data type of the variable which we pass as the
first parameter to new() and that finalizer proc is automatically called whenever that variable is
freed by the Nim memory management system. As finalizers are passed as a parameter to a new()
call, and new() is only used for references, finalizers work only for ref data types.

Destructors do not have this restriction. We define the destructor for a value type, but it is also
called for reference types by the compiler.

Starting with version 1.4, Nim introduced scope-based resource management, which is enabled
when the program is compiled with --mm:arc or --mm:orc. In that case, variables are immediately
deallocated when they go out of scope, and if a destructor was defined for the data type of that vari
able, it is called automatically.

In the C++ programming language, it is common practice for resources like files to be closed and
released automatically by destructors when they go out of scope. Now, this is also possible in Nim.
To make use of destructors for our own data types, we have to define a proc called =destroy which
receives an instance of our data type passed as a var value object:

type
 O = object
 i: int

proc `=destroy`(o: var O) =
 echo "destroying O"

import std/random

proc test =
 for i in 0 .. 5:
 if rand(9) > 1:
 var o: O
 o.i = rand(100)
 echo o.i * o.i

randomize()
test()

In the for loop, we enter a new scope when the if condition evaluates to true. At the end of the if
block, we leave the scope, and the destructor is called automatically. Inside the destructor proc, we

200

could do some cleanup tasks, close files, and release resources. Destructors are also called when ref
objects go out of scope:

type
 O = ref object of RootRef
 i: int

proc `=destroy`(o: var typeof(O()[])) =
 echo "destroying O"

import std/random

proc test =
 for i in 0 .. 5:
 if rand(9) > 1:
 var o: O = O() # new O
 o.i = rand(100)
 echo o.i * o.i

randomize()
test()

To use destructors, we have to compile our program with the --mm:arc or --mm:orc option; other
wise, the specified destructor procs will be ignored. In our code, we can test for working destruc
tors with a construct like when defined(gcDestructors):.

Note that destructors do not work for plain pointer types:

type
 O = object
 i: int
 OP = ptr O

proc `=destroy`(o: var O) =
 echo "destroying O"

import std/random

proc test =
 for i in 0 .. 5:
 if rand(9) > 1:
 var o: OP = create(O) # new O
 o.i = rand(100)
 echo o.i * o.i

randomize()
test()

201

Therefore, using destructors to release data directly from C libraries is not possible. But at least for
Nim >= v1.6 destructors work for distinct pointer types:

type
 O = object
 i: int
 OP1 = ptr O
 OP = distinct ptr O

proc `=destroy`(o: var OP) =
 echo "destroying OP"

import std/random

proc test =
 for i in 0 .. 5:
 if rand(9) > 1:
 var o: OP = OP(create(O)) # new O
 OP1(o).i = rand(100)
 echo OP1(o).i * OP1(o).i

randomize()
test()

81
destroying OP
3600
destroying OP
2401
destroying OP
9025
destroying OP

So using destructors to destroy data from C libraries should be possible now.

Destructors and inheritance
When we use an object-oriented programming style with subclassing of ref objects, it’s useful to
know that for subclassed ref objects, the destructor of the parent class is automatically invoked if
we do not define one for our subclassed type. This also works when we import the parent type from
another module, at least since Nim v1.6:

module tt.nim
type
 O1* = ref object of Rootref
 i*: int

202

when defined(gcDestructors): # check not really needed, as =destroy call is just
ignored when condition is false
 proc `=destroy`*(o1: var typeof(O1()[])) =
 echo "destroy O1 ", typeof(o1)

module t.nim
import tt

type
 O2 = ref object of tt.O1
 j: int

type
 O3 = ref object
 o1: tt.O1

type
 O4 = object
 o1: tt.O1

type
 O5 = ref object of tt.O1
 x: float

when defined(gcDestructors):
 proc `=destroy`(o5: var typeof(O5()[])) =
 echo "destroy O5 ", typeof(o5)
 tt.`=destroy`(o5)

proc main =
 var o1: tt.O1
 new o1
 echo o1.i

 var o2: O2
 new o2
 echo o2.j

 var o3: O3
 new o3
 new o3.o1

 var o4: O4
 new o4.o1

 var o5: O5 = O5(x: 3.1415)
 echo o5.x

main()

203

When we compile the module t.nim with --mm:arc or --mm:orc and run it, we get this output:

0
0
3.1415
destroy O5 O5:ObjectType
destroy O1 O1:ObjectType
destroy O1 O1:ObjectType
destroy O1 O1:ObjectType
destroy O1 O1:ObjectType
destroy O1 O1:ObjectType

Therefore, when our variables o1 to o5 go out of scope, the destructors are called. Module tt.nim
defines a ref object type, but the destructor proc takes a var value parameter. The destructor is
called when a value object or a ref object goes out of scope. Our variable o1 has type tt.O1, so it
was indeed expected that its destructor from module tt.nim is called. Variable o2 is a ref object
with parent O1. As we define no destructor for this type, the destructor of the parent type is called.
The variables o3 and o4 are of ref object and of value object types, each with a field of type O1, and
for that field, the destructor for O1 is called. Finally, for type O5, we define our own destructor,
which then additionally calls the destructor from module ᴛᴛ.

Destructors are mostly used for library implementations, e.g., for a File data type, which is auto
matically closed when a file variable goes out of scope. As you may never have to use destructors
yourself, it is not necessary to remember all these details. However, it is good to know that destruc
tors behave as one might expect. If you later want to use a destructor in your own code, you can
refer back to this section or, perhaps more helpfully, consult the Nim manual.

References:

• https://forum.nim-lang.org/t/8013

• https://forum.nim-lang.org/t/7360

204

https://forum.nim-lang.org/t/8013
https://forum.nim-lang.org/t/7360

Finalizers
In Nim, finalizers are procedures that we can specify as an optional second parameter when we call
the system new() proc to allocate heap memory for a reference type variable. The specified final
izer procedure is then later called by the Nim memory management system when the ref variable
is freed:

type
 O = ref object of RootRef
 i: int

proc finO(o: O) =
 echo "finalize O"

proc newO: O =
 new(result, finO)

proc main =
 var o = newO()
 var o2 = new(O)
 var o3 = O(i: 7)

main()
GC_fullcollect()

We added a call to GC_fullcollect() to ensure that the REFC GC is actually invoked before the pro
gram terminates. For ARC/ORC we get this output:

finalize O
finalize O
finalize O

But when we compile with old REFC, we get only two finalizer calls:

nim r --mm:refc t.nim

finalize O
finalize O

For o3, the finalizer is not called. We don’t know if that is a bug or feature of v1.9.3.

The output of the above program may be surprising at first: we only call the newO() procedure to
initialize the variable o, which then calls new() by passing a finalizer proc named finO(). For o2 and
o3, we allocate memory as usual, without the use of a finalizer proc. But when o2 and o3 go out of
scope, even for these two variables, the finalizer procedure finO() is called. The reason for this is,
that the system proc new() binds the optional finalizer procedure to the data type of the passed ref

205

variable. This binding process occurs for the first call with a passed finalizer proc, and can not be
reverted. We can later call new() without a finalizer or use the similar O() call to initialize the ref
variable, but that can not undo the binding. Furthermore, using a different finalizer procedure for
the same data type would not work anymore. Passing the same finalizer proc multiple times is OK
and may be a common use case, but it has no real effect, as the first call did the binding already.

The behavior of finalizers in Nim can indeed be a bit confusing and prone to errors. We might pass
a finalizer proc to new() somewhere in a large program and forget about it. Later, we use new ()
without a finalizer or use the O() notation to reserve the memory for our ref variable. Therefore,
we might think that no finalizer is involved, but since a finalizer was used at least once somewhere,
it is now bound to all of our allocations of that data type. That can easily lead to bugs as the unin
tended called finalizers may do things that they should not do with our data.

Finalizer procedures must always be defined in the same module as the type for which they will be
used:

 This restriction appears to have been removed in Nim 2.0.

module tt.nim
type
 O* = ref object of RootRef
 i: int

proc fin*[T](o: T) =
 echo "finalize T"

proc newO*: O =
 new(result, fin)

import tt

type
 OO = ref object of tt.O
 x: float

proc finn[T](o: T) =
 echo "finalize O"

proc main =
 var oo: OO
 new(oo, finn)

main()

We import the tt.nim module and subclass the ref object type tt.O. Although the tt.nim module
defines a generic finalizer proc fin(), we cannot use that one for our subclassed type OO. Instead, we
must copy it from the tt.nim module into our main module, and we might even need to use a differ

206

ent procedure name. Otherwise, we get the compiler message

Error: type bound operation `fin` can be defined only in the same module with its type
(OO:ObjectType)

Whenever we really need a finalizer or a destructor, we should prefer destructors if we can com
pile our code with the compiler options --mm:arc or --mm:orc.

207

Modules
Modules are Nim’s way of dividing multiple source code files into clearly separated units and hid
ing implementation details. Nim uses a concept of modules, which is very similar to that of Modula-
2 or Oberon. All the Nim standard libraries are divided into modules that collect and logically group
data types and related procedures. In a sense, modules can be considered as Nim’s classes.

In Nim, each module directly corresponds to one text file. Currently, Nim does not support submod
ules, known from Ruby, which divide a single text file into multiple modules. Similar restrictions
apply to module names as to other Nim symbols, e.g., the hyphen '-' is not allowed in module names.
Typically, we use only lowercase and the extension ".nim" for the names of modules. It is strongly
recommended to avoid using module names that are identical to symbol (type) names used within
that module. Every text file containing Nim source code essentially constitutes a module, which can
then be imported and used by other modules.

But all symbols like data types or procedures have to be exported to make them visible and usable
by other modules. This is accomplished, as in Oberon, by appending an asterisk character to all
symbols (names) that should be exported. These restricted exports allow for the hiding of imple
mentation details — all symbols not exported are private to that module and can be changed and
improved at any time without the importing module noticing.

Note that when we append the asterisk to the name of an object to export that type, the object’s
fields are still hidden and cannot be accessed from within the importing module. You may append
an asterisk to selected field names as well, or you may provide exported getter and setter procs for
the field access. A read-only export, as known from the Oberon language, is currently not possible
with Nim.

We can import whole modules, that is, all symbols that are marked for export by the asterisk, or we
can import only the symbols that we need by specifying their names. Let us create a module that
declares a single procedure to remove all characters from a string that are not letters:

save this textfile with name mystrops.nim
proc remNoneLetters*(s: string): string =
 result = newString(s.len)
 var pos = 0
 for c in s:
 if c in {'a' .. 'z', 'A' .. 'Z'}:
 result[pos] = c
 inc(pos)
 result.setLen(pos)

We save the aforementioned text file containing our Nim source code as mystrops.nim. Note the
export marker after the proc name. We can import and use that module as follows:

import mystrops

echo remNoneLetters("3h7.5g:8h")

208

When we import modules, we generally place the import statement at the top of the importing
module; this makes it easy to see what modules are imported. The imported symbols can be used in
the code following the import statement. Module names should be lowercase and may as other Nim
symbols only contain letters, decimal digits, and the underscore character. We can import multiple
modules with a single import statement when we separate the module names with commas. Start
ing with Nim v1.6, it is recommended to import modules from Nim’s standard library with the std
prefix as in import std/math or import std/[strutils, sequtils]. Importing the same module multi
ple times is not a problem, and does not increase the file size of the final executable. Note that in
the import statement the module names have to be used literally, so this would not work:

const strfuncs = "stringutils"
import strfuncs

Instead of importing whole modules, we can import only single symbols with the from x import y,
z syntax like

from mystrops import remNoneLetters

echo remNoneLetters("3h7.5g:8h")

Both forms are examples of an unqualified import; that is, we can refer to the proc by only its
name. We do not need the qualified form with a module name prefix like mystrops.remNoneLet
ters(), as long as there are no name conflicts. But whenever we want, we can use the qualified form
also.

Nim programmers tend to prefer importing entire modules and using unqualified names, though
this is often considered bad style in some other languages like Python. In dynamically typed lan
guages like Python, unqualified imports may indeed pollute the namespace and generate many
name conflicts, but in statically typed languages like Nim unqualified imports seems to generate
name conflicts only in very rare cases. Procedures with the same name typically have different
parameter lists, so the overload resolution of the compiler can decide what proc is to be used. And
when really a name conflict occurs, then the compiler will tell us, and we can easily fix it by prefix
ing the procedure name with its module name.

For data types, constants, or enums, the likelihood of name conflicts might not be so small, poten
tially necessitating the use of qualified names.

We can also enforce a fully qualified import in Nim by a notation like

from mystrops import nil

In this case, we can use all symbols from that module only in qualified form. However, this
approach doesn’t always work seamlessly in Nim, given that unlike Java, Nim doesn’t have classes.
Consequently, qualified use of method call syntax or user-defined or overloaded operators can be
challenging. Imagine strutils.add(s, '\n'), how should that look with method-call-syntax?

209

For imports, we have also the except keyword, so we may do something like

import std/strutils except toUpper

The except keyword can be used to prevent possible name conflicts, without having to use quali
fied names.

Note that the sʏsᴛᴇᴍ module is imported automatically, so we should not import it explicitly. Also,
note that Nim always imports only what is truly necessary in the final executable, meaning that
importing only a few symbols from a module has no code size advantage over importing the whole
module. Still, it may improve the readability of your code, when you import only single symbols for
the case that you are sure that you require no more. Maybe like from std/math import Pi. Note that
you can even in that case access other symbols of that module by fully qualified names like
math.sin().

With the growing standard library, it may occur that module names of the standard library inter
fere with your own module names. So Nim now allows and recommends qualified import of mod
ules from the standard library like import std/strutils. And for external packages installed by the
nimble package manager, imports in the form import package/[mod1, mod2, mod3] are permitted.

Finally, you can also import modules under a different name using the as keyword as follows:

import std/tables as maps

With the latest Nim compiler, you can also enforce fully qualified import and use of an alternate
module name by using an import statement as follows:

from std/tables as maps import nil

With this import statement, you could access symbols from the tables module only by use of the
maps module prefix like maps.newTable().

Finally, with the export keyword, one library module can export other modules, which it imports
itself. This may simplify the use of connected modules. As an example, when using the gintro bind
ings for GTK4, we import all the needed modules generally like import gintro/[glib, gobject,
gtk4]. We may decide to simplify that import statement by creating one more module called gtkplus
that consists only of these two lines:

module gtkplus
import gintro/[glib, gobject, gtk4]
export glib, gobject, gtk4

Then, a user of ɢɪɴᴛʀo could simply write import gtkplus to have access to all the modules. How
ever, for GTK, this is not really a good idea. We will discuss the ɢɪɴᴛʀo module and perhaps one
other Nim GUI library in the second half of the book.

210

Cyclic imports
Typically, we try to arrange our own modules in a tree-like bottom-up structure. A module x may
define basic types and simple functions working with these types, and a higher-level module y may
import all symbols from module x and extend the functionality. But in rare cases, it could be neces
sary for the modules x and ʏ to import each other, as x has to use types or functions of module ʏ,
and vice versa. This case is called cyclic import and is currently not supported by Nim. Indeed, we
should generally try to avoid cyclic imports when possible, as cyclic imports make the software
design difficult. But sometimes we cannot really avoid these cycles. In that case, currently, the best
solution is, to put all the concerned data types in a separate low-level module, which is then
imported from both other modules. The planned Nim version 2.0 may permit cyclic imports, so this
restriction might vanish in the future.

We have already mentioned that the compiler only imports functions, data types,
and other symbols from imported modules that are really needed. So a plain
import std/math is fine, there is no need to write from std/math import sin, cos,
sqrt to optimize the final executable size. The same is true when whole modules or
single symbols from a module are imported multiple times: When modules ᴀ and ʙ
each import module ᴄ, and our top-level main module imports modules ᴀ and ʙ,
module ᴄ is still only imported once; there is no unneeded code duplication. The
import statement is not merely an instruction to insert some code, but rather a
hint to the compiler about which symbols may be needed. But remember, that the
use of templates, inline iterators, generics, and inline procedures may indeed
lead to code duplication, but that is by intent.

211

Include
The include statement should be not confused with the import statement. Include simply inserts a
text file at the position where the include statement occurs. The include statement can be used to
split very large modules into smaller entities.

212

Part III: Nim’s Standard Library
In this part of the book, we will introduce you to some of the most essential modules of Nim’s stan
dard library. This includes modules for common operations like the serialization of Nim data types,
which allows us to write them to external nonvolatile storage and read them back into the program
later, or handling command-line options and parameters for programs that are launched from a
terminal window. Further, we will introduce you to important container data types such as hash
tables (sometimes referred to as hash maps in other programming languages) and various kinds of
set data types. We will also introduce modules for working with regular expressions, and we will
show how simple modules like the ᴛɪᴍᴇs and the ʀᴀɴᴅoᴍ module can be used. Most modules men
tioned in this part will be from the Nim standard library, so you will not have to install external
packages to use them. However, there may be some exceptions, such as certain external Nimble
packages with very useful functionality and an easy user interface. One of these exceptions is the
ʀᴇɢᴇx module: Nim’s standard library comes with the ʀᴇ and ɴʀᴇ modules, which both use the PCRE
C library. We have decided to introduce the ʀᴇɢᴇx module instead, which is an external package
written completely in the Nim language.

Formally, Nim distinguishes between pure and impure libraries and wrappers. The majority of
Nim’s standard libraries consist of pure libraries, which are modules completely written in Nim
code. Impure libraries provide a high-level Nim interface and can be used like pure libraries, but
use C libraries under the hood. Examples are the two modules ʀᴇ and ɴʀᴇ, which both use the PCRE
C library, and some database modules. Impure libraries can be used in the same way as pure ones
when the underlying C library is installed. The few wrappers that are shipped with Nim only pro
vide a low-level interface to C libraries, which may use unsafe pointers as proc parameters and
may require the user to do manual memory management. Some impure modules use these wrap
pers and hide all the ugly stuff for us, but we generally do not use the wrappers directly.

Nim’s standard library is supported by thousands of external packages, which can easily be
installed with Nim’s package managers, and then can be used in the same way as the modules of
the standard library. The next part of the book will introduce you to the use of external packages
and presents some of the most important ones out there.

213

Command-line arguments
When we launch a program from inside the terminal window, we can pass it some additional para
meters, e.g. the name of a file to process or option parameters to influence the behavior of the pro
gram. We have done so already when we launched the Nim compiler or maybe a text editor from
inside our terminal window. Using command line parameters is convenient when we work from
inside a terminal and there are parameters that we can know in advance. A more interactive way
to collect parameters is reading in input while the program is already running, as we did in Part II
of the book when processing the list of our friends. We will learn some more details about this
interactive processing of input in the next section.

Nim allows processing command-line arguments in the same basic way as all C programs do, but
Nim’s standard library and some external packages allow also much more advanced handling of
command-line arguments. For simple cases, the C-like way is sufficient. For C programs the com
mand line arguments are even coupled very closely to the language itself, the number of arguments
and the list of parameters are the two typical parameters of the C main() function and are used in
this way:

// C program expecting one command line argument
// Compile with gcc t.c
#include <stdio.h>
int main(int argc, char *argv[]) {
 printf("Executing program %s\n", argv[0]);
 if(argc == 2) {
 printf("The argument supplied is %s\n", argv[1]);
 } else if(argc > 2) {
 printf("Too many arguments supplied.\n");
 }
 else {
 printf("One argument expected.\n");
 }
}

Here argc is the number of available arguments, and argv is an array containing the actual argu
ments in the form of C strings. These values are passed to each C program by the OS when the pro
gram is launched from inside a terminal. Actually, the value of argc is the number of passed argu
ments plus one. This means that when we specify no arguments at all, argc still has the value of
one. Additionally, argv[0] is always the name of the executed program. We need to understand that
command-line arguments passed to a program are separated by white space, that is, at least one
space or tab character. For this reason, we have to enclose single arguments containing white space
in double quotes:

$ gcc t.c -o t
$./t Nim two
Executing program ./t
Too many arguments supplied.
$./t "Nim two"

214

Executing program ./a.out
The argument supplied is Nim two

In Nim, the same functionality is available through the paramCount() and paramStr() procs, which
we need to import from the os module. But paramCount() gives us the actual number of parame
ters, so when we call our program on the command line without any arguments, paramCount() will
return the value zero. Note that paramStr() is not a global array variable, but a procedure.
ParamStr(0) gives us the name of our executable, and with arguments greater than zero we get the
passed arguments as strings in ascending order. Using an index number for an argument that was
not provided will cause paramStr() to raise an exception.

An argument evaluation similar to the one in our earlier C program could look like this:

from std/os import paramCount, paramStr

proc main =
 echo "Executing program ", paramStr(0)
 let argc = paramCount() + 1
 if argc == 2:
 echo "The argument supplied is ", paramStr(1)
 if paramStr(1) in ["-d", "--debug"]:
 echo "Running in debug mode"
 elif argc > 2:
 echo "Too many arguments supplied."
 else:
 echo "One argument expected."

main()

Using this straightforward API is acceptable when we expect one or two arguments, maybe a file
name and an option, like the -d or --debug parameter used in the code above. With more command-
line arguments, the process can become complex quickly, as arguments can be passed in arbitrary
orders and combinations. So you should try one of the available libraries for that case. One of these
is the ᴄʟɪɢᴇɴ package, which we will present in Part III of the book.

References:

• https://github.com/c-blake/cligen

215

https://github.com/c-blake/cligen

Reading data from the terminal
While using command-line arguments is convenient for data like filenames or options that we
already know when we launch a program from the terminal window, often we have to provide tex
tual user input while the program is already running. Functions for this task are provided by the ɪo
module, a part of the sʏsᴛᴇᴍ module, which we do not have to import explicitly. In one of the intro
ductory sections of the book, we already used the readLine() and getch() procedures to read in a
line of text from the terminal and to wait for a single keypress event.

For input and output operations in a terminal window, the ɪo module defines the three variables
stdin, stdout, and stderr of the File data type. Many procedures in the ɪo module expect a File type
variable as the first parameter. We can explicitly open a named file to write data to external media
like the SSD, or we can just use the stdin and stdout variables to read data from the keyboard and
to write text to the terminal window. Unlike other named files, we do not have to call open() or
close() on stdin and stdout to open or close the files, and some other file operations like setFilePos()
may not work for these file variables:

var s: string = stdin.readLine()
stdout.write(s)
stdout.flushFile

As previously mentioned, the readline() function allows textual user input, including spaces. It’s
important to note that you must terminate your input by pressing the return key. This action passes
the input string to the OS, which then forwards the input to our program. This form of input is
sometimes referred to as 'blocking' because while we’re waiting for user input, our program is
essentially idle; it cannot perform other tasks until the user has pressed the return key. For single-
character input where pressing the return key isn’t necessary, such as for simple yes/no input, you
may use the getch() function. This function is also blocking. In a later section of the book, we may
show how we can use threading to actually do some useful work, while we wait for user input. In
the literature stdin, stdout, and stderr are often called streams, where stderr can be used instead of
stdout for writing error messages. This can be useful in special cases when we have an application
where we want to redirect error messages to a file or to separate regular output and error mes
sages. If you need more details about these stream or file variables, and the use of the stderr vari
able, you may consult external literature.

The ɪo module does not provide read() functions for other basic data types like numeric or boolean
types. So we should use readLine() to read the user input in string form, which we can convert by
functions like parseInt(), parseFloat(), or similar functions to numeric data. Note that parsing procs
like parseInt() are provided by the module sᴛʀᴜᴛɪʟs as well as by the module ᴘᴀʀsᴇᴜᴛɪʟs — one func
tion raises an exception for invalid input, while the other one returns a boolean value indicating
conversion success. Of course, we should handle textual user input always carefully and never just
assume that the input is actually valid data. Some of the modules that can be used for converting
textual input data into other data types like the sᴛʀᴜᴛɪʟs, ᴘᴀʀsᴇᴜᴛɪʟs and sᴛʀsᴄᴀɴs modules are
described in more detail at the end of this part of the book.

For advanced user input processing, like cursor movement, colored display, or displaying progress
bars, you may also consult the ᴛᴇʀᴍɪɴᴀʟ module. Finally, to create advanced textual user interfaces

216

(TUIs), we recommend trying external packages, such as the illwill library.

References:

• https://en.wikipedia.org/wiki/Standard_streams

• https://nim-lang.org/docs/terminal.html

• https://github.com/johnnovak/illwill

217

https://en.wikipedia.org/wiki/Standard_streams
https://nim-lang.org/docs/terminal.html
https://github.com/johnnovak/illwill

Writing text to the terminal window
In previous sections, we have used the echo() function to write variables of various data types to
the terminal window. The echo() function accepts multiple arguments, writes the string representa
tion of these arguments to the terminal window, and concludes by writing the \n character. This
moves the cursor to the beginning of the next line in the terminal window. We have already used
the write() function from the ɪo module for the case that we want to write a single string to the ter
minal without a terminating newline character. The ɪo module contains overloaded write() func
tions for other basic data types such as int, float, and bool. It also includes a variant with a varargs
parameter and applied stringify operator, allowing write() to function similarly to echo() if we pass
stdout as the first parameter. The C library function fprintf() is used for the actual output operation.
Keep in mind that write operations to stdout are generally buffered. Thus, the result of write() oper
ations might remain invisible until we write a string containing a newline character or call the
flushfile() function to enforce buffer writing.

218

Option types
Option types can be used to encapsulate values in a way that allows marking the value as unde
fined. This can be especially useful for the return types of functions, which may or may not return a
meaningful value.

Let’s assume we have a function called find() that searches for the first index position of a charac
ter in a string:

proc find(s: string; c: char): int =
 result = -1 # not found
 var i = 0
 while i < s.len:
 if s[i] == c:
 return i
 inc(i)

echo "Nim".find('i')

The function returns the index position or -1 to indicate that the character has not been found. This
works because we typically use signed integers in Nim, and the valid string index positions are
never negative. Hence, a negative result is an obvious indication of an error. Similarly, when a
function needs to return a reference or a pointer, the special value nil can be used to indicate the
absence of a value. Actually, in most cases, we can just define a special value as the indication for
the absence of a result or as an error indicator, for example, int.low, char(0), or NaN for float
results.

Other ways to indicate failures include returning a boolean value for success and returning the
actual result value as a var parameter, returning a tuple that encloses a boolean for success indica
tion and the actual result, or returning the result(s) as a sequence that can be empty in the event of
no success:

proc find(s: string; c: char; pos: var int): bool =
 pos = 0
 while pos < s.len:
 if s[pos] == c:
 return true
 inc(pos)

var p: int
echo "Nim".find('i', p), ": ", p

proc find(s: string; c: char): tuple[succ: bool, pos: int] =
 var i = 0
 while i < s.len:
 if s[i] == c:

219

 return (true, i)
 inc(i)

echo "Nim".find('i')

proc find(s: string; c: char): seq[int] =
 var i = 0
 while i < s.len:
 if s[i] == c:
 result.add(i)
 inc(i)

echo "Nim".find('i')

For a more formalized way to indicate the absence of a meaningful result, many modern program
ming languages provide the concept of Option types, which are sometimes also called Maybe types.
Option types can encapsulate an arbitrary data type and provide functions like isSome() or isNone()
to test for the existence of a valid value, and functions like get() to extract the actual value from the
Option type:

import std/options

proc find(s: string; c: char): Option[int] =
 var i = 0
 while i < s.len:
 if s[i] == c:
 return some(i)
 inc(i)

var res = "Nim".find('i')
if res.isSome:
 echo res.get

The oᴘᴛɪoɴs module of Nim’s standard library provides the generic Option[] data type along with
functions like some(), isSome(), and isNone(). These functions allow creating a new Option type
encapsulating some data and checking if data is present. In the code above, we use some(i) to wrap
the integer value in the Option type when we have found a match. For no match, the proc returns
the default empty Option type instance. When we use the find() function with the Option[int] result,
we first have to call isSome() to check if valid data is available, and then call get() to retrieve the
actual data.

Nim’s Option types are based on objects. The generic Option[T] type is an object with two fields, a
boolean indicating the presence of data, and a field that can store the actual data. Nim uses also an
optimization: When the data type is of ref or pointer type, then the bool field is not necessary, as the
absence of data is equivalent to a data entity with nil value.

The overhead of Option types is not that big — a procedure which would return a 4-byte integer

220

would return an object instead — the additional boolean field would increase the size of the result
to 5 bytes, which is generally extended by the compiler to multiples of the word size, that is 8 byte
total. So, in the worst-case scenario, we have a 100% size overhead. Moreover, the loss of perfor
mance due to the encapsulation of data in Option types should not be significant in most use cases.

The oᴘᴛɪoɴs module provides some more procedures for the handling of Option types, but this
short introduction should be enough to get you started. You can find an alternative implementation
of a Nim Option-Type at https://github.com/arnetheduck/nim-results.

References:

• https://en.wikipedia.org/wiki/Option_type

221

https://github.com/arnetheduck/nim-results
https://en.wikipedia.org/wiki/Option_type

Serialization — storing data permanently on
external storage
When you start writing larger programs, these may generate data that you might want to perma
nently store on external nonvolatile storage devices, such as SSDs or traditional hard disks of your
computer. For textual data, this is very easy, as you only have to write and read a stream of unstruc
tured bytes. However, when your program deals with object instances, container data types like
sequences, or references, the process becomes more complicated. Writing the data is always
easy — you can just convert all the fields of your object data type to strings and write them to a
stream or a file. But the reading back part is much more difficult: You would have to read in the
data as strings, and then process each string — maybe converting it to a float number — and then
assign it to the matching field of an object instance.

When your data consists only of value objects and no references, then you may consider just writ
ing that data in plain binary form to a file and reading it back. This strategy seems to be simple, and
it is very fast, as no type-conversion steps are involved. But at the same time, it has some draw
backs: The stored data can not be checked with tools like a text editor, it can generally not be used
from other programs, and when you should change the data types used in your program, you could
not read back stored files anymore.

So we will explain how you can store Nim data types in a human-readable text format first. Two
popular text formats, JSON and YAML, are often used. JSON is a simple format, which is easy to
parse, but not well readable for humans. YAML is more complicated, but more flexible and is very
good readable for humans. Other popular data formats are XML or TOML.

For Nim, we have already many modules available, which we can use for storing data in JSON or
YAML format. The Nim standard library includes the ᴍᴀʀsʜᴀʟ and the ᴊsoɴ module. Both store the
data in JSON format, but the ᴍᴀʀsʜᴀʟ module can not separate the distinct data fields into multiple
lines, which seriously restrict the human readability. So we will describe and use the ᴊsoɴ module
in this section, which is also easy to use, but has a larger set of functionality and can generate real
human-readable text files by use of the pretty() function.

Other available external packages for data serialization are the nim-serialization module set from
(https://github.com/status-im/nim-serialization) and the very powerful but complicated NimYaml
implementation (https://nimyaml.org/). We may describe these packages in Part V of the book. An
alternative to the ᴊsoɴ module of Nim’s standard library is the https://github.com/treeform/jsony
package, which has the advantage, that is can handle default values and missing object fields. Both
are useful when we extend our software and need to process old data files.

When we have to store and read back Nim data to nonvolatile storage media, we have some serious
points to consider: First, we have to handle various data types like integers, floats, strings,
objects — and even the container types like sequences. And we may have to support reference
types and maybe also inherited types and containers filled with heterogeneous, subclassed refer
ence objects. The ᴊsoɴ module supports all Nim data types, including containers and references, but
not heterogeneous sequences.

For our first JSON example, let us assume that we have written a small tool that let the user create
some geometrical shapes, and we want to store the shapes in a file and read it back. For that, we

222

https://github.com/status-im/nim-serialization
https://nimyaml.org/
https://github.com/treeform/jsony

generally use an intermediate step, which converts the data to a string, and the string back to the
data object. The string is then written to a file or stream, and read back. Let’s start with the string
conversion. Storing that string and reading it back from the file will be explained subsequently.

import std/json

type
 Line = object
 x1, y1, x2, y2: float

 Circ = ref object of RootRef
 x0, y0: float
 radius: float

 Data = object
 lines: seq[Line]
 circs: seq[Circ]

var
 l1 = Line(x1: 0, y1: 0, x2: 5, y2: 10)
 c1 = Circ(x0: 7, y0: 3, radius: 20)
 d1, d2: Data

d1.lines.add(l1)
d1.circs.add(c1)
d1.lines.add(Line(x1: 3, y1: 2, x2: 7, y2: 9))
d1.circs.add(Circ(x0: 9, y0: 7, radius: 2))

let str1 = pretty(%* d1) # convert the content of variable d1 to a [.str]#string#
echo str1 # let us see how the [.str]#strings# looks
d2 = to(parseJson(str1), Data) # read the [.str]#string# back into a data instance
let str2 = pretty(%* d2) # and verify that we got back the original content
echo str2

assert d1 == d2 would fail
assert str1 == str2

When we run the program, we would get this output:

{
 "lines": [
 {
 "x1": 0.0,
 "y1": 0.0,
 "x2": 5.0,
 "y2": 10.0
 },
 {
 "x1": 3.0,

223

 "y1": 2.0,
 "x2": 7.0,
 "y2": 9.0
 }
],
 "circs": [
 {
 "x0": 7.0,
 "y0": 3.0,
 "radius": 20.0
 },
 {
 "x0": 9.0,
 "y0": 7.0,
 "radius": 2.0
 }
]
}
{
 "lines": [
 {
 "x1": 0.0,
 "y1": 0.0,
 "x2": 5.0,
 "y2": 10.0
 },
 {
 "x1": 3.0,
 "y1": 2.0,
 "x2": 7.0,
 "y2": 9.0
 }
],
 "circs": [
 {
 "x0": 7.0,
 "y0": 3.0,
 "radius": 20.0
 },
 {
 "x0": 9.0,
 "y0": 7.0,
 "radius": 2.0
 }
]
}

As you can see, we converted the instance d1 of type Data to a string, and then we converted that
string back to the variable d2, achieving matching content. We have intentionally made Circ a ref
object to demonstrate that the conversion works for both value and reference objects. In the

224

example program, we applied the %* macro to our data instance d1 to get a JsonNode, and finally use
the pretty() function to get a nice multi-line string. To fill the variable d2 with the content stored in
str1, we first have to apply parseJson() on the string, and then use to() to unmarshal the JSON node
into the matching object type.

Now, let us investigate what happens when we try to use the ᴊsoɴ module with a container with het
erogeneous ref objects. For that, we subclass the Disc type, creating a new Arc type:

import std/json
from std/math import PI

type
 Line = object
 x1, y1, x2, y2: float

 Circ = ref object of RootRef
 x0, y0: float
 radius: float

 Arc = ref object of Circ
 startAngle, endAngle: float

 Data = object
 lines: seq[Line]
 circs: seq[Circ]

var
 d1, d2: Data

d1.lines.add(Line(x1: 0, y1: 0, x2: 5, y2: 10))
d1.circs.add(Circ(x0: 7, y0: 3, radius: 20))
d1.lines.add(Line(x1: 3, y1: 2, x2: 7, y2: 9))
d1.circs.add(Arc(x0: 9, y0: 7, radius: 2, startAngle: 0, endAngle: PI))

echo d1.circs[1] of Arc, " ", Arc(d1.circs[1]).endAngle

let str1 = pretty(%* d1)
d2 = to(parseJson(str1), Data)
let str2 = pretty(%* d2)
echo str2
echo d2.circs[1] of Arc

The output of that program looks like this:

true 3.141592653589793
{
 "lines": [
 {
 "x1": 0.0,

225

 "y1": 0.0,
 "x2": 5.0,
 "y2": 10.0
 },
 {
 "x1": 3.0,
 "y1": 2.0,
 "x2": 7.0,
 "y2": 9.0
 }
],
 "circs": [
 {
 "x0": 7.0,
 "y0": 3.0,
 "radius": 20.0
 },
 {
 "x0": 9.0,
 "y0": 7.0,
 "radius": 2.0
 }
]
}
false

While our initial instance d1 contains a run-time value of Arc type, and so we can access the endAn
gle field, we get false as result for the of Arc test for the d2 instance. So run-time type information
is lost.

When we have to store different data types in one container, then one solution is to use object vari
ants, which should work with the ᴊsoɴ module. Another obvious possibility is to just copy the data
into containers with the appropriate static type before storing them in an external medium, and
copy them back when we read the data back from external storage. We will show an example of
that now:

import std/json
from std/math import PI

type
 Line = ref object of RootRef
 x1, y1, x2, y2: float

 Circ = ref object of RootRef
 x0, y0: float
 radius: float

 Arc = ref object of Circ
 startAngle, endAngle: float

226

 Data = object
 elements: seq[RootRef]

 Storage = object
 lines: seq[Line]
 circs: seq[Circ]
 arcs: seq[Arc]

const
 DataFileName = "MyJsonTest.json"

var
 d1, d2: Data
 storage1, storage2: Storage
 outFile, inFile: File

d1.elements.add(Line(x1: 0, y1: 0, x2: 5, y2: 10))
d1.elements.add(Circ(x0: 7, y0: 3, radius: 20))
d1.elements.add(Line(x1: 3, y1: 2, x2: 7, y2: 9))
d1.elements.add(Arc(x0: 9, y0: 7, radius: 2, startAngle: 0, endAngle: PI))

for el in d1.elements:
 if el of Arc:
 storage1.arcs.add(Arc(el))
 elif el of Circ:
 storage1.circs.add(Circ(el))
 elif el of Line:
 storage1.lines.add(Line(el))
 else:
 assert(false)

let str1 = pretty(%* storage1)

if not open(outFile, DataFilename, fmWrite):
 echo "Could not open file for storing data"
 quit()
outFile.write(str1)
outFile.close

if not open(inFile, DataFilename, fmRead):
 echo "Could not open file for recovering data"
 quit()
let str2 = inFile.readAll()
inFile.close

assert str1 == str2

storage2 = to(parseJson(str2), Storage)

for el in storage2.lines:

227

 d2.elements.add(el)
for el in storage2.circs:
 d2.elements.add(el)
for el in storage2.arcs:
 d2.elements.add(el)

for el in d2.elements:
 if el of Arc:
 echo "found arc with endAngle: ", Arc(el).endAngle

For this example program, we use the object-oriented programming style and keep all the geomet
ric object instances as references in a single sequence. Note that doing this is not always a good
idea, as this OOP style with the use of references and dynamic run-time dispatch can be slower due
to many small heap allocations for each ref object and due to the dynamic dispatch (if el of …)
overhead. Using multiple, homogeneous sequences with value types for each of our data types can
be a better solution, and in that way, you have more control whenever you process the data, for
drawing them on the screen or user interaction for example. Maybe you want to draw all the lines
first? But there can be situations where we really need to have all the objects as references in a sin
gle container. A typical situation is, that we use an RTree for fast object location. RTrees are data
structures that can store two-dimensional or multidimensional geometric objects and their rectan
gular bounding boxes in a tree-like fashion for fast object location. This may be used in a drawing
program so that coordinates of a user’s mouse click can be fast matched to an object. For such a use
case, we would prefer having all the object instances available in a single RTree instead of using
one RTree data structure for each object shape.

Our program defines an additional Storage data type, which contains homogeneous sequences for
each possible geometric shape. We then copy all our ref objects from the sequence of elements in
the matching sequences of the storage object using the dynamic of type query to select the exact
matching sequence.

After that, we can use the already known JSON functions to serialize the storage object into a
string, store the string to a file, read it back, and deserialize the data again into a different variable
of Storage data type. Finally, we use a simple for loop to copy the ref objects from the temporary
storage object into a Data variable called d2. For storing the data in an external nonvolatile
medium, we use the File data type and the related functions open(), close(), write(), and read().
Their use should be obvious: We pass an uninitialized variable of File data type, a file name, and a
file mode to open(), use write() to write the whole string, and use readAll() to read the data back.
When done with each file, we use close() to close the file. The File data type is part of the ɪo module,
which is again part of the sʏsᴛᴇᴍ module, so we don’t have to import these modules. We could have
used as an alternative also the sᴛʀᴇᴀᴍs module. You will learn some more details about the File
data type and the sᴛʀᴇᴀᴍs module in later sections of the book.

We should mention that unfortunately, life is not always that easy, as sometimes
we can not freely select the textual output format. Imagine you are creating a CAD
(computer-aided design) tool that needs to be compatible with another existing
tool. In this case, the textual storage format is already defined by the existing tool,
and generally, that format does not match the JSON or YAML file format. Even
when the format should be one of these, matching it exactly would be difficult.

228

While writing out our own data in that foreign format is still not really difficult, as
we can just write single matching strings, reading in the textual data is more com
plicated: Typically, we would read the input file line by line, and we would have to
inspect and interpret each input string, maybe by the use of regular expressions
or a custom parser. That generally includes handling missing or invalid data.

References:

• https://nim-lang.org/docs/json.html

• https://nim-lang.org/docs/io.html

• https://nim-lang.org/docs/marshal.html

• https://github.com/status-im/nim-serialization

• https://github.com/treeform/jsony

• https://nimyaml.org/

229

https://nim-lang.org/docs/json.html
https://nim-lang.org/docs/io.html
https://nim-lang.org/docs/marshal.html
https://github.com/status-im/nim-serialization
https://github.com/treeform/jsony
https://nimyaml.org/

Streams and files
In the previous section, we learned how we can store structured data like a sequence of objects, in
a human-readable form to nonvolatile media by use of the ᴊsoɴ module.

Text in the form of a single string, or in the form of a container holding multiple strings, consti
tutes a kind of unstructured data that we can write directly to nonvolatile storage media and read
back later. We can do the same with containers of basic, unstructured data types like integer or
floating-point numbers, and with some restrictions, we can even write tuples or objects directly as
raw bits and bytes to external storage and read them back later. Of course, in this manner, the
stored data becomes a binary blob, which cannot be read or modified by other tools, such as a text
editor. But that may not be intended or advantageous at all, perhaps we’re conducting scientific
data processing with a single tool and simply want to temporarily store the data to continue pro
cessing it later.

Files
For storing unstructured data, Nim provides the ɪo module with the File data type and related pro
cedures, and the sᴛʀᴇᴀᴍs module with the Stream data type and related procedures. While a File in
Nim is currently only a pointer to a C file, the sᴛʀᴇᴀᴍs module operates at a higher abstraction level.
Although the Nim language does not directly support interfaces, the Stream data type of the sᴛʀᴇᴀᴍs
module is some form of an interface, which is implemented by a StringStream and a FileStream data
type. Internally, this interface concept is realized by storing a set of function pointers in the Stream
instance.

When we have to store unstructured data like text, it is not always clear if we better should use
Files or Streams. Streams may be the better choice when we (also) want to use a string as a data
source like a file or when we need the peek() functions of the sᴛʀᴇᴀᴍs module to access data with
out advancing the position in the stream.

We will use the File data type of the ɪo module first. As the ɪo module is part of the sʏsᴛᴇᴍ module,
we do not have to import it before we can use it. The principle usage of files is that we call the func
tion open() to open a file with the given name, call some procedures to write or read data, and
finally close() the file. While Nim supports destructors, when we compile with --mm:arc or
--mm:orc, the ɪo module does not yet use them, so we should actually call close() to close the file.

Historically, a file is a one-dimensional data type, which is accessed in sequential order. Up to
the end of the twenty century, it was not uncommon that large files were stored on magnetic
tapes, which could be read or written only slowly in sequential order. Read or write opera
tions could take place only at the actual position, and available functions like f.setFilePos()
were very slow as they involved moving the tape. The introduction of hard disks and solid-
state disks removed this restriction, and modern operating systems often buffer files in RAM
for longer time periods, so that files may have actually similar performance as arrays or
sequences. Interestingly, with modern CPU caches, ordinary RAM storage can appear simi
larly slow and sequential compared to the extremely fast cache, much like magnetic tapes in
the past.

230

from std/os import fileExists
proc main =
 const FN = "NoImportantData"
 if os.fileExists(FN):
 echo "File exists, we may overwrite important data"
 quit()
 var f: File = open(FN, fmWrite)
 f.write("Hello ")
 f.writeLine("World!")
 f.writeLine(3.1415)
 f.close
main()

Running that program will create a text file with this content in the current working directory:

Hello World!
3.1415

At the start of our main() proc, we check if a file with that name already exists in the current work
ing directory by using the function os.fileExists() to ensure that we do not overwrite important data.

Module ɪo provides multiple overloaded open() procedures. Here we use a variant that returns a
file and raises an exception in the unlikely case of an error. The necessary parameters are a file
name and a file mode. As we want to create a new file, mode fmWrite is used.

Note that fmWrite would clear the content of an existing file, so we cannot use fmWrite to append
data to an existing file. We would have to use fmReadWriteExisting or fmAppend to append data to an
already existing file. As this open() proc can raise an exception, it may make sense to enclose it in a
try/except block, or we could use an open() variant which returns a boolean value to indicate suc
cess instead. When the file is successfully opened, we can use procedures like write() or writeLine()
to write text strings to the file. Both procs accept multiple arguments and apply the stringify opera
tor $ on them before writing the content. WriteLine() writes a '\n' after the last argument to start a
new line. When done, we call close() to close the file. The operating system will close the file for us
when our program terminates, so calling close() may not seem important. However, if we open
many files without closing them, we may eventually encounter errors from the operating system
about too many open files, causing our program to fail or terminate.

The close() proc receives the file not as a var parameter, so it cannot set the file value to nil. When
the file has the value nil, then the close() call is ignored, but when we would call close() multiple
times with a non-nil argument, we get a program crash. We may use the try/finally or the defer
construct to ensure that we really close the file when done.

The ɪo module provides some procedures like writeBuffer(), writeBytes(), or writeChars(), which
gives us as a return value the actual number of bytes written. This return value should generally
match the requested number of bytes to write but can be smaller when the write operation fully or
partially failed, e.g. because the storage medium had no capacity left.

When performance really matters, we should note that passing non-string arguments to write() or

231

writLine() procs using their optional auto-stringify feature involves the allocation of new strings
and incurs some performance cost. When we already have a string variable available in our pro
gram, it can be faster to first convert our data into that variable and then pass it to the write() or
writeLine() procs.

Reading strings from a file works very similarly:

proc main =
 var f: File
 try:
 f = open("NoImportantData", fmRead)
 echo f.readLine
 echo f.readLine
 finally:
 if f != nil: # test for nil not really necessary, close() would ignore the call
for f == nil
 f.close
main()

The readLine() procedure reads in a line of text. The LF, CR, or CRLF line end markers are not part of
the returned text string. Of course, we may get an empty string with length zero back, when we
read a line that immediately starts with LF, CR, or CRLF, or we may get back a string with no visible
characters but only a few spaces or tabulator characters '\t' when a line contains only white
space. When our read() operations have moved the actual file I/O position to the end of the file, and
we try to read more content, an exception is raised.

The ɪo module provides a readLine() procedure that returns a newly allocated string, and another
one that takes an existing string as a var parameter. The latter should be a bit faster, as it can avoid
the allocation of a new buffer when the passed string has already enough capacity.

The ɪo module provides a function called endOfFile() with a boolean result, which we can use to
check if the end-of-file position is already reached. The provided functions readBuffer(), read
Bytes(), or readChars() return the actual number of bytes read, which can be smaller than the
requested value when the end of the file is reached earlier. Currently, readChars() checks if the
passed openArray[char] has enough capacity for the request, but readBytes() does no check!

We can also use the lines() iterator to iterate over the lines of a text file or use the readLines() pro
cedure to read the content line by line.

proc main =
 var f: File
 f = open("NoImportantData", fmRead)
 for str in f.lines: # iterator
 echo str
 f.setFilePos(0) # read again from start index 0
 var s: string
 while f.readLine(s): # proc
 echo s
 f.close

232

 var sq = readLines("NoImportantData", 2) # read lines to seq of strings
 echo sq
main()

As iterating over the complete file line by line moves the actual file position to the end of the file,
we need to call setFilePos() to return to the start position. The readLines() procedure takes a file
name and the number of lines to be read as parameters, and returns a seq of strings. When the file
does not contain at least the number of requested lines, an EOF exception is raised. Another pro
vided procedure is readAll(), which reads the entire file content into a returned string variable. For
readAll() to work, the actual file position has to be the start of the file. In case of an error, an excep
tion is raised.

We can also write and read binary data directly to a file, without converting it to (human-readable)
strings first:

proc main =
 var f: File
 f = open("NoImportantData", fmWrite)
 var i: int = 123
 var x: float = 3.1415
 assert f.writeBuffer(addr(x), sizeof(x)) == sizeof(x)
 assert f.writeBuffer(addr(i), sizeof(i)) == sizeof(i)
 f.close
 f = open("NoImportantData", fmRead)
 assert f.readBuffer(addr(x), sizeof(x)) == sizeof(x)
 assert f.readBuffer(addr(i), sizeof(i)) == sizeof(i)
 f.close
 echo i, " ", x
main()

Of course, these are low-level, dangerous operations. While writeBuffer() should never crash our
program, readBuffer() can do that easily when we specify wrong sizes or destination addresses, as
that may overwrite other data unintentionally. So we would generally not use these procedures
directly but write safer helper procs, when we really need or want this form of binary file access. A
potential use case may be quickly storing big data sets with limited hardware resources. For exam
ple, storing a float32 only requires 4 bytes on the storage medium, and file I/O is fast. However, the
same number, when represented as human-readable digits, may require more than 8 bytes
(1.234567E3), and the process of converting to a string and parsing it back can be time-consuming.

In the same way, we can use writeBuffer() and readBuffer() to store tuples, objects, arrays, or
sequences of these directly in binary form:

type
 O = object
 x: float
 i: int
 b: bool

233

proc main =
 var s: seq[O]
 s.add(O(x: 3.1415, i: 12, b: true))
 var f: File
 f = open("NoImportantData", fmWrite)
 assert f.writeBuffer(addr(s[0]), sizeof(O) * s.len) == sizeof(O) * s.len
 f.close
 f = open("NoImportantData", fmRead)
 var s2 = newSeq[O](1)
 assert f.readBuffer(addr(s2[0]), sizeof(O) * s2.len) == sizeof(O) * s2.len
 f.close
 echo s2[0]
main()

The output should look like this:

(x: 3.1415, i: 12, b: true)

But of course, this is dangerous and fragile. We present this example because beginners often
inquire about it and may want to try it at least once. Obviously, this can only work when the tuples
or objects contain only plain data types; that is, no strings, no references, and certainly no other
nested container types like sequences or tables. And reading back data may fail when we use a dif
ferent OS or a different compiler version.

The ɪo module provides the File variables stdin, stdout, and stderr, which are the standard input,
output, and error streams. Sometimes we use stdout.write() instead of the common echo() proc
when we want to write something to the terminal window without moving the cursor to the next
line already.

An important function of the ɪo module is flushFile(), which is used to ensure that all buffer content
of buffered files is actually written to the file. This is important when we use the stdout File vari
able, maybe to ask the user a question in the terminal window. We would call stdout.flushFile() to
ensure that the user really sees the text on the screen immediately. The echo() proc calls flushFile()
automatically after each output operation. When we close a file, flushFile() should be called auto
matically, but when our program is terminated without calling close(), it may depend on the actual
implementation and operating system.

The ɪo module provides more useful procedures, but we will conclude this introductory section
here and continue with the streams module in the next section.

References:

• https://nim-lang.org/docs/io.html

Streams
A stream is an abstract interface for performing certain I/O operations, which was introduced by
languages like C or Modula-2 decades ago. The sᴛʀᴇᴀᴍs module of the Nim standard library pro

234

https://nim-lang.org/docs/io.html

vides a FileStream and a StringStream implementation, which behave very similarly. Nim’s sᴛʀᴇᴀᴍs
module provides similar functions as the ɪo module with its File data type, but it can operate on
strings instead of on Files, and it provides a set of peek() functions to access data at the current
read position without moving forward. And some functions are more robust, for example, closing a
stream multiple times does not crash the program, as the first close() call sets the file variable of file
streams to nil so that following close() calls are ignored. Currently, the sᴛʀᴇᴀᴍs module does not
support automatically closing streams when they go out of scope.

We can create a new FileStream by calling the overloaded procs newFileStream() with an already
opened file or a filename as a parameter, or we can use openFileStream(). The latter raises an
exception when the stream can not be opened, while the former procedure just return nil. We can
write and read textual data with the sᴛʀᴇᴀᴍs module in a way very similar to how we did it with
the ɪo module and the File data type:

from std/os import fileExists
import streams

proc main =
 const SN = "NoImportantData" # stream name
 if os.fileExists(SN):
 echo "File exists, we may overwrite important data"
 quit()
 var fstream = newFileStream(SN, fmReadWrite)
 if fstream != nil:
 fstream.write(123, ' ')
 fstream.writeLine(3.1415)
 fstream.setPosition(0)
 let l = fstream.readLine()
 fstream.close()
 assert l == "123 3.1415"
main()

We again test if a file with that name already exists. Then we try to create a new FileStream by
using file mode fmReadWrite, so that we can write and read from that file. Finally, we write two
numbers (which are automatically converted to strings), set the file position back to the beginning,
and verify what we wrote by reading it again before we close the stream.

In a very similar way, we can write to and read from string streams:

import std/streams
proc main =
 var stream = newStringStream()
 stream.write(123, ' ')
 stream.writeLine(3.1415)
 stream.setPosition(0)
 let l = stream.readLine()
 stream.close()
 assert l == "123 3.1415"

235

main()

In the example above, we do not test if the stream variable is not nil, as newStringStream() should
never fail.

For buffered streams, we can call flush() to ensure that the buffer content (of file streams) is writ
ten, similar to what we can do for plain Files of the ɪo module. Instead of io.endofFile(), we use the
procedure atEnd(), to test if the current stream position is already at the end of the stream. Func
tions getPosition() and setPosition() are available to query or set the actual position in the stream.
While the ɪo module with its File data type supports position modes relative to the current position
or the file end for io.setFilePos(), streams.setPosition() always uses absolute values — that is, posi
tions measured from the beginning of the stream. The sᴛʀᴇᴀᴍs module also provides the low-level
procs readData() and readDataStr(), which read data to a memory region or into a string and
returns the actual number of bytes read to indicate success. And as for the ɪo module, a procedure
readAll() is available to read all data of a stream into the returned string variable.

The procedure writeLine() always writes the passed arguments as strings. The overloaded write()
procs, which accept varargs arguments, write the passed values as strings and apply the stringify
operator $ if necessary. The same does the writeLine() procedure, but it writes a newline character
when all passed variables have been written. One more overloaded write proc for single string
parameters exists.

But for single non-string arguments, a generic write() proc is used, which writes numbers (and
other data types like boolean types or single characters) directly in binary form without converting
them to strings.

To read the binary numbers back, we can use functions like readFloat64() which have a well-
defined return type and read a fixed number of bytes. Or we can use the generic read() proc, which
accepts a var parameter that defines the data type that we intend to read in binary form. Addi
tional to the various read() procedures, the sᴛʀᴇᴀᴍs module provides a set of peek() procs, which
reads data without moving the actual position in the stream forward. This can be useful for parsing
files, as it allows us to read the same information multiple times with ease. Internally, the peek()
function uses a call of setPosition() to save the current position and one more call of setPosition() to
set back the old position to the initial value, so peek() has some overhead.

import std/streams
from std/os import getFileSize
proc main =
 const SN = "NoImportantData" # stream name
 var fstream = newFileStream(SN, fmReadWrite)
 if fstream != nil:
 fstream.write("012") # write a 3 byte string
 var pi: float64 = 3.1415
 fstream.write(pi) # write as 8 byte binary blob
 fstream.setPosition(0) # prepare for reading from start
 var i16: int16
 i16 = fstream.peekint16 # read first 2 bytes as int16, do not change actual
position
 assert i16 == '0'.ord + '1'.ord * 256

236

 var i8: int8
 i8 = fstream.readInt8 # read back one byte
 # fstream.read(i8) # does work also
 assert i8 == '0'.ord # char(0) has position 48 in ASCII table
 assert i8 == 48
 var buffer: array[2, char]
 fstream.read(buffer)
 let x = fstream.readFloat64 # read back in binary form
 assert x == 3.1415
 fstream.close()
 assert buffer == ['1', '2']
 assert os.getFileSize(SN) == 3 + 8 # 3 byte string and a float64
main()

In the example above, we write a three-byte long string and a float64 to the file stream. We call set
Position(0), to read the stream from the beginning again, and then read in an int16 with the func
tion peekint16() without moving the actual position forward, followed by readInt8(), which moves
the actual position one byte forward. (Instead of readInt8(), we could also call read() with variable
i8 as passed var parameter.) Then we read in two bytes, and finally the float64 value at the end of
the stream. Finally, by using the function getFileSize() from the os module, we check if the file really
has the expected size.

The sᴛʀᴇᴀᴍs module provides many functions, and the possible writing of data as strings or in
binary form can make using that module a bit daunting at first. However, most procs have exam
ples in the API docs, which help you to use them.

For reading strings and whole lines, the sᴛʀᴇᴀᴍs module provides functions like readLine(),
peekLine(), readStr(), and peekStr(), each in a variant that returns a newly allocated string,
and one that uses a passed var parameter to return the string. The variants with var parame
ters should be a bit faster, as they can avoid allocating a new string when the passed in var
parameter has already enough capacity.

References:

• https://nim-lang.org/docs/streams.html

237

https://nim-lang.org/docs/streams.html

String processing
String processing is a wide area. Nim’s standard library provides various pure Nim modules like
sᴛʀᴜᴛɪʟs, ᴘᴀʀsᴇᴜᴛɪʟs, and sᴛʀsᴄᴀɴs for supporting this task, and the impure ʀᴇ and ɴʀᴇ modules and
external packages support more advanced operations like string pattern matching with regular
expressions (regex) or by use of the parsing expression grammar (PEG). We will start with the sᴛʀᴜ
ᴛɪʟs module, which is one of the most used modules of the Nim standard library. Then we will intro
duce some more specialized modules like sᴛʀsᴄᴀɴs, ᴘᴀʀsᴇᴄsᴠ, ᴘᴀʀsᴇᴜᴛɪʟs and sᴛʀғoʀᴍᴀᴛ. While pars
ing strings with regular expressions or by use of the parsing expression grammar is very flexible
and powerful, it is not that easy, not the fastest solution, and not that often really needed. So we
have moved the Regex section to the end of this Part III of the book, and we introduce PEGs later in
part V, where we discuss some useful external packages.

Whenever we do string processing in Nim, we should care a bit for performance, as some string
operations can be slow by design. For simple tasks, we should prefer to use functions from the sim
pler modules such as sᴛʀᴜᴛɪʟs when possible, and resort to Regex or PEG only when really neces
sary or when performance is not critical. And even when we use elementary simple functions like a
string split, it is generally good to have a feeling of how the requested operations may work. When
ever string functions return a string as a result, this implies an allocation, which takes some time
and consumes some memory. An example is the split() operation, which returns a sequence of mul
tiple strings. The split() function is easy to use, making it often the first choice when we want to
process lines of text read from files. But as for each section of the split line a string is allocated, it
may not be as fast as desired. In some cases, the compiler might be able to optimize the splitting
process, but it is also a good idea to think about other ways to extract the data, maybe by applying
procs from the sᴛʀsᴄᴀɴs module, which can parse lines directly into passed var parameters, avoid
ing unnecessary allocations. Nim 2.0 may get support for view types, which functions like split()
may use as return types to reuse slices of the initial string instead of allocating new result strings.

Remember that Nim strings are value types and have value semantics. String assignment
copies the string content and does not create just a reference as in some other programming
languages. Nim also defines a string variant called TaintedString, which is mainly just an
alias for an ordinary string, as long as the taint mode is not turned on. Functions like io.read
Line() return tainted strings, which typically can be used like ordinary strings.

Basic string operations
We discussed Nim’s string data type already in Part II of the book. Remember that a string in Nim
is a variable-size container for ASCII characters. Strings can be plain ASCII strings, or the bytes of
the string can be interpreted as Unicode glyphs. Nim has also a cstring data type, which was ini
tially introduced to be compatible with the character arrays used in C libraries as strings, but is
now called compatible string as cstrings do also support the JavaScript backend. Nim strings can
be passed directly to C libraries, as a Nim string contains a Null terminated buffer for the actual
data, which is identical to a C language string. So, converting a Nim string to a C language string or
passing a Nim string to a C library is free of cost, while converting a C string to a Nim string
always involves allocating a new Nim string and copying the data content. Technically, for a Nim
string s, addr s[0] is the C string pointer, called * char in C language. Whenever we pass strings to

238

C libraries, we have to care for the fact that Nim’s garbage collector may deallocate the string auto
matically. Most C libs create copies of passed strings when the library uses the string for a longer
time span. GTK, for example, does this with text for its widgets. But when the C library does not
copy the string but uses it directly for a longer time, then it can occur that the Nim code frees the
string, as the only Nim variable referring to the string goes out of scope, but the C library still uses
the string. For that rare case, we may call GC_ref() on the string to prevent garbage collection, but
that may generate memory leaks then. And when we compile our program with options --mm:arc or
--mm:orc, applying GC_ref() on strings does not work anymore! In the case that C libraries create
strings, they provide generally also a function to deallocate the string. When we use such a C func
tion, it is typically the best solution, that we copy the string from the C library to a Nim string and
immediately deallocate the C string by a call of the provided free()/dealloc() function. For most C
libraries, there exist good high-level bindings, which do not have these issues, so we mostly can use
C libs like pure Nim libs.

Nim’s sʏsᴛᴇᴍ module provides already some basic string operations, like accessing single charac
ters by the subscript operator [], accessing slices of multiple adjacent characters, or joining multi
ple strings with the & operator. The overloaded add() functions to append single characters or other
strings to existing string variables are also provided by the sʏsᴛᴇᴍ module.

var s: string = "I like"
s &= " Nim."
s[^1] = '!'
s[0 .. 4] = "We low" # result is: "We love Nim!"

In the above example, we start by assigning a string literal to the string variable s, then we append
one more string literal and finally replace the last character and the first five characters with
another character and by another string. Note that by using the slice operator, we can not only
replace character ranges, but we can also replace slices of different lengths. This way, we can also
delete ranges in the string by replacing them with the empty string "".

The sʏsᴛᴇᴍ module also defines the stringify operator $, which converts expressions into their
string representations when placed in front of them. Procedures like echo() apply the stringify
operator automatically to all their arguments when necessary. And the sʏsᴛᴇᴍ module provides the
contains() function, which we can use to test if a string contains a character. Instead of contains(),
we can also use the in operator.

echo $7
echo "Nim".contains('i')
echo 'i' in "Nim"

The sʏsᴛᴇᴍ module also provides the {promis newString() and newStringOfCap(), which are mostly
used for optimizing purposes. The function newString(n) creates a string of length n with uninitial
ized content. We would have to assign characters to the positions 0 .. n-1 to create a valid string.
The function newStringOfCap() creates a string with a length of zero, but with a buffer capacity of n
characters. When we know the needed buffer capacity, or at least a lower bound of it, it makes
sense to create the string with newStringOfCap() with optimal buffer size to avoid reallocations. Of
course, we could still append more data; Nim would then allocate a larger buffer and copy the old

239

content.

var s1 = newString('z'.ord - 'a'.ord + 1)
for c in items('a' .. 'z'):
 s1[c.ord - 'a'.ord] = c

var s2 = newStringOfCap(32) # we intend to append not more than 32 characters, but we
could do.
for c in 'a' .. 'z':
 s2.add(c)
s1, s2 is abcdefghijklmnopqrstuvwxyz

Filling characters into an existing string using the subscript operator [] is faster than appending
single characters with the add() function. This is because the add() function must check if the string
still has enough capacity and also needs to increase the actual string length by one with each call.

Note that a single character like 'a' is very different from a string with only one character like "a".
A character in Nim is nothing more than a single byte, while a string — even one with only one
character or an empty one — is an opaque entity with length, capacity, and a pointer to a data
buffer. When a single character is sufficient, we should use it, not a string containing a single char
acter. A function call such as s.add("a") might produce less optimized code than s.add('a'), but the
compiler might optimize the former for us. When we consider optimization, we might wonder if, in

var s = "Hello!"
echo s
s = "Bye."
echo s

line 3 allocates a new string or just copies the string literal "Bye." in the existing data area. Well,
we would hope for the latter, of course.

Another interesting question is whether, in

var s = "Result is: "
var x = 12.34
echo s, x
echo s & $x

we would be better off using line 3 or line 4. Line 3 looks more clear, and we assume that it also
would produce better code, as the actual append operation is avoided.

Often used functions are len() and setLen() to query and set the length of a string. Although len()
resembles a function call, it is an internal compiler function, so calls are fully optimized. So it is OK
to write

for i in 0 .. s.len():

240

 echo '*'

It is not necessary to introduce a temporary variable like let l = s.len() to avoid many function
calls. In C, this differs, as calling the strLen() function would not only imply a function call, but that
function would also need to count all the characters up to the terminating '\x0' since C strings lack
a length field. The function setLen() is mostly used to truncate strings. A call like s.setLen(0) makes
s look like a newly allocated string, but its data buffer can be reused. Reusing strings is generally
better for performance than allocating many new strings. The setLen() function is rarely used to
increase the string length — in that case, an allocation of a larger data buffer can occur, and the
string would still look the same as initially, and all the new string positions would still contain the
default binary zero content. We would have to fill in actual characters by use of the [] subscript
operator. In Nim version 1.6, a call of s.setLen(0) overwrites the whole old content with '\0', which
can cost some performance and may be avoided in version 2.0. To get the lowest and highest char
acter index of a string, we can use s.low and s.high. s.low should always return zero, while high() is
identical to len() - 1. Therefore, high() is -1 for an empty string. Note that although calling high()
and len() on a Nim string has no costs, this is not the case for cstrings, which lack a length field.

The sʏsᴛᴇᴍ module provides the overloaded & operator, which we can use to concatenate chars and
strings, the &= operator to append a new string to an existing string, and the add() functions to
append characters or strings to an existing string. For peak performance, it is advisable to consis
tently employ the most straightforward, "native" operations, provided they do not compromise the
clarity of our code or we have assurance that the compiler is proficient at optimizing more complex
constructs.

var s = "Ni"
s = s & "m" # maybe not a good idea for optimal performance
s.add('m') # better

The add() function can also be used to add a cstring to a Nim string, and the JS backend even
allows one cstring to be appended to another one using add() calls.

The module sʏsᴛᴇᴍ also exports a substr() procedure, which copies and returns a slice of a string.
Overloads with an optional first index defaulting to 0 and an optional last index defaulting to s.high
exist.

var s = "Hello!"
assert s.substr(2, 3) == s[2 .. 3]

s = "ABC"
echo s[0 .. 5] # fail
echo s.substr(0, 5) # index is clipped to s.high
s[0 .. 5] = "" # fail

Of course, == and != operators for string comparison are provided. To test if a string is empty, we
can compare it with an empty string literal or test if len() is zero. The latter is guaranteed to have
the best performance, but the former, though slightly shorter, should not underperform signifi

241

cantly. Some other languages provide an empty() test function for this; we may define our own if
we deem it necessary.

if s != "":
if s.len != 0:

When we pass a string to a procedure that does no operations with it, maybe it only calls echo() or
stdout.write() to print it, then it may have a tiny performance advantage to pass it as cstring. This is
similar to how we might pass sequences as openArray to functions, which also avoids one level of
indirection. Also note that, while a Nim string is a value type and we cannot test it for nil or return
nil from a procedure intended to return a string, this restriction does not apply to cstrings. Unfor
tunately, recent Nim versions have started to complain when we use cstrings as procedure parame
ters. In some scenarios, e.g. when we use Nim trampoline functions to call C libraries, these com
plaints may not be really justified.

Module stringutils
The module sᴛʀɪɴɢᴜᴛɪʟs provides a set of functions (120 currently) and a few iterators for simple
string operations. Using those functions and iterators is simple in most cases and mostly well
explained in the API docs. Remembering which functions exist, their exact name, and the function
arguments can be a bit difficult at first. We will introduce in this section some of the most used or
more difficult functions, and give some warnings when the actual performance may not be as good
as expected.

Performance-critical operations are generally those that have to allocate new strings or shift many
characters, such as text inserting operations. Note that some functions of this module, like toUp
perAscii() work only with the lower and upper ASCII letters. For Unicode operations, we may need
the ᴜɴɪᴄoᴅᴇ module.

In this section, we use the term whitespace, which refers to the invisible characters {' ', '\t', '\v',
'\c', '\n', '\f'} (space, tab, vertical tab, carriage return, new line, form feed). Note that we have
two possible newline characters {'\c', '\n'} that start a new line and that older Windows text
files may still use the two-character string "\c\n" to start a new line. The character set {'A'..'Z',
'a'..'z'} is called (ASCII) letters, the set {'0'..'9'} (decimal) digits, and the set {'0'..'9', 'A'..'F', 'a'..'f '}
hex digits, used to represent hexadecimal numbers.

The sᴛʀɪɴɢᴜᴛɪʟs module supports string interpolation through the use of the % operator.

import std/strutils
echo "The $1 programming language is $2." % ["best", "Nim"]
echo "The $# programming languages are $#." % ["most difficult", "C++, Rust and
Haskell"]
echo "A $adj programming language is $lang." % ["adj", "low level", "lang",
"assembly"]
echo "Let's learn $#" % "Nim!"

242

echo format("I know $# programming languages.", 2)

We can use $1 up to $9 to mark positions where string n from the array should be inserted or just $
to insert the strings in the order as they appear in the array. We can also use named insert markers
and specify name-value string pairs in the array. For a single string, we can omit the array and pass
it just as a string, and finally, we can use the format() proc to enable stringify for the parameters.

We have already mentioned the useful but performance-critical set of split() functions:

import std/strutils
let str = "Zero, first, second, third"
var s: seq[string] = str.split(", ")
echo s
echo str.split(", ", 0)
echo str.split(", ", 1)
echo str.split(", ", 3)
echo str.split(", ", 4)

@["Zero", "first", "second", "third"]
@["Zero, first, second, third"]
@["Zero", "first, second, third"]
@["Zero", "first", "second", "third"]
@["Zero", "first", "second", "third"]

We used the split() variant, which accepts a string as a split marker. This function accepts one
optional parameter for the number of splits to execute and returns a sequence containing the single
strings. The split marker string, also called a separator, is removed from the strings. The default
value for the number of splits is -1, indicating that we want a split at each separator position. If we
specify a positive number n, then only n splits are executed and the last element of the returned
sequence will contain the remainder of the string. When we specify a value for the intended splits,
which is larger than the number of contained split markers, then we get a full split.

The reason why this function is not very fast is that it has to allocate a sequence for the return
value and a new string for each split, and one more for the last string or the remainder. For the
case that we do need only the first few strings of the split, it is a good idea to specify the number of
actual splits to increase performance. Nim 2.0 may fully support view types, which may avoid all the
string allocations for the returned results and so improve the performance.

The sᴛʀᴜᴛɪʟs module provides overloaded functions that use single characters as separators or
accept a set of characters as separators, so we can split at space, tabulator, comma, or semicolon
with {' ', '\t', ',', ';'}. And a function splitWhitespace() is available to split at whitespace-like
spaces and tabulators, which removes all the whitespace between the strings. Notice that the split()
function for strings or single characters does one split for each separator, so we can get empty
strings as result as in

import std/strutils

243

let str = "Zero___first_second__third"
let str2 = "Zero first\tsecond third"
echo str.split('_')
echo str2.splitWhiteSpace()
@["Zero", "", "", "first", "second", "", "third"]
@["Zero", "first", "second", "third"]

An interesting behavior of splitWhiteSpace() is that whitespace at the start or end of a string is just
ignored, while the split() function returns additional empty strings when the string to split starts
or ends with the separator:

import std/strutils
let str = "_Zero_first_second_third_"
let str2 = " Zero first\tsecond third "
echo str.split('_')
echo str2.splitWhiteSpace()
@["", "Zero", "first", "second", "third", ""]
@["Zero", "first", "second", "third"]

Another function is splitLines(), which splits a string at CR, LF, or CR-LF characters.

For these splitting functions also iterator variants exist, which behave like the functions with the
same name. When we limit the number of splits to perform for the iterators, we may get the
remaining string as the last returned value. You should consult the API docs for details if necessary

Functions named rsplit() are also available. They behave like split(), but start the splitting process
from the end of the string. We can get the file extension of a filename with a command like file
name.rsplit(1)[^1].

The functions removePrefix() and removeSuffix() can sometimes help to avoid expensive split oper
ations. There are overloaded functions that remove all single characters, all characters from a set,
or a single string:

import std/strutils
var s = "NNimmm Language"
s.removePrefix('N'); echo s # immm Language
s.removePrefix({'N', 'i', 'm', ' '}); echo s # Language
s.removePrefix("Langu"); echo s # age
s. removeSuffix("ge"); echo s # a

Other useful functions are startsWith() and endsWith(), which accept a single character or a string
and return a boolean value:

import std/strutils
var s = "Nim Language"
echo s.startsWith('N') # true
echo s.startsWith("Nim") # true

244

echo s.endsWith('e') # true
echo s.endsWith("Programming") # false

An efficient function, similar to find(), is continuesWith(). It can be used like this: "Nim Lan
guage".continuesWith("Lang", 4). This tests if a string contains a substring at position n.

We can use the join() procedure to join strings in arrays or sequences to single strings with an
optional glue string. Join() also works when the elements are not already strings — in this case, the
stringify operator $ is applied first:

import std/strutils
var a = ["Nim", "Rust", "Julia"]
var s = a.join(", ")
echo s
echo s.split(", ").join("; ")
echo [1, 2, 3].join("; ")
Nim, Rust, Julia
Nim; Rust; Julia
1; 2; 3

The overloaded find() functions accept optional start and end positions and return the index posi
tion of the first match or -1 when the search gave no result:

import std/strutils
var s = "Nim Language"
echo s.find('L') # 4
echo s.find({' ', 'a'}) # 3
echo s.find("age") # 9
echo s.find("Rust") # -1

The overloaded contains() functions can be used to test if a string contains a character, a set of
characters, or a substring. We can write sub in s instead of contains(s, sub). Note that the variant of
this function for single character tests is defined in the sʏsᴛᴇᴍ module.

The replace() function can be used to replace all occurrences of a character or a substring in a
string and to return the new string. We can use replace() with an empty replacement to delete a
substring. The also available delete() function is used to delete a range specified by two indices in
place.

Additionally, a replaceWord() function exists, which does only replace whole words, i.e. words that
are surrounded by word boundary characters like spaces, tabulators, or newlines.

The function multiReplace() is a variant, that can replace multiple substring/replacement pairs
passed as tuples in one pass.

The function strip() can be used to remove multiple characters from a set at the start and the end of
a string. The default character set is whitespace, and per default, strip() removes characters at both
ends of the string. The function stripLineEnd() removes a single line end marker, such as \r, \n, \r\n,

245

\f, \v, from the end of the string, but only once.

Sometimes useful is the boolean function isEmptyOrWhitespace() which checks if a string is empty
or contains only whitespace. Also useful can be the function repeat() which returns a string that
contains the passed character or the passed string n times, and the function spaces() which returns
a string containing only n spaces.

For single-character tests, we have functions like isDigit(), isUpperAscii(), isLowerAscii(),
isSpaceAscii, isAlphaNumeric(). Function isDigit() tests for characters '0'..'9', isUpperAscii() for
'A'..'Z', isLowerAscii() for 'a'..'z', isSpaceAscii() for ASCII whitespace (' ', '\t') and isAlphaNumeric() test
for lower or upper case ASCII letter or a decimal digit.

Function toLowerAscii() converts all the characters 'A'..'Z' to lower case, and toUpperAscii() converts
all the characters 'a'..'z' to upper case. The function argument can be a string or just a single charac
ter. With capitalizeAscii(), we can convert the first ASCII character of a string to upper case.

The overloaded count() functions can be used to count the characters or substrings in a string,
while countLines() can be used to count the number of lines, where lines are defined as being sepa
rated by CR, LF, or CR-LF.

Sometimes, we may need functions like formatFloat(), formatBiggestFloat(), or formatEng() to for
mat float numbers for output purposes. You would have to consult the sᴛʀᴜᴛɪʟs API docs for all the
format details. An intToStr() function with an argument to specify the minimal string length is also
available. The string may have leading zeros for alignment.

Finally, some important functions are the parsing functions like parseFloat() or parseInt(), which
convert strings to float or integer numbers. Both raise an exception when the string does not con
tain a valid number.

The sᴛʀᴜᴛɪʟs module contains other functions that are not used as often, such as functions to con
vert data to hexadecimal, octal, or binary representation, or to parse numbers from these string
representations back into numeric values. Other functions, like align(), center(), and indent() are
available for string positioning. We will not try to describe these seldom-used functions here, as it
is hard to remember the detailed behavior. You should skim the API docs and consult them when
you need one of the exotic functions or when you have forgotten how to use a specific function.[1]

Module parseutils
The ᴘᴀʀsᴇᴜᴛɪʟs module provides a set of functions for efficient and fast parsing of strings. These
functions avoid allocating new strings by passing back results in var string parameters and by
returning the number of processed characters. The module ᴘᴀʀsᴇᴜᴛɪʟs is a good choice when we
need to efficiently parse strings with a simple structure. For more complex input data, we might
need to use RegEx or PEGs. Suppose we have a set of library names that include version numbers,
but we need the plain names. The function parseWhile() is a good candidate for this task:

import std/parseutils
var libs = ["libdconf.so.1.0.0", "libnice.so.10.11.0", "libwebkit2gtk-5.0.so.0.0.0"]
var l = newStringOfCap(128)
for s in libs:

246

 echo s.parseUntil(l, {'.', '-'})
 echo l
 echo s.parseWhile(l, {'a'..'z'})
 echo l

First, we allocate a string with sufficient capacity, allowing the parse() functions to use it without
needing further allocations. As we want to receive the plain names, using parseWhile() with a
charset as the last parameter appears to be a possible solution. However, as we can observe, this
approach won’t work for ᴡᴇʙᴋɪᴛ2ɢᴛᴋ, which includes a digit in its name.

8
libdconf
8
libdconf
7
libnice
7
libnice
13
libwebkit2gtk
9
libwebkit

We can fix this by passing the extended char set {'a'..'z', '0'..'9'} to parseWhile() or by use of parseUn
til() with a character set that does not belong to a name. Both functions return the number of
processed characters and provide the captured string in the passed var parameter. Note that we
can use the slice operator .. to specify character ranges for the charset parameter when the charac
ters build a continuous sequence in the ASCII table.

A related function, skipUntil(), may be used when we are primarily interested in the version num
bers following the name.

 let p = s.skipUntil({'.', '-'})
 echo s[p .. ^1]

All these functions accept an optional start parameter as the last argument. A common use case is
to use an integer position variable initialized with zero, which we increase by the returned value so
that the parsing can continue at the current position in the string. The next example will use this
strategy. For parseUntil() overloaded functions are available, which get not a charset, but a single
character or a substring as a parameter. These functions stop parsing when the character or the
substring is found and return that position.

Functions like parseInt() and parseFloat() can be used to extract numbers from strings:

import std/parseutils
var s = "In the year 2020 I gain 2.5 kg more fat."
var year: int

247

var value: float
var p = s.skipUntil({'0'..'9'})
p += parseUtils.parseInt(s, year, p)
p += s.skipUntil({'0'..'9'}, p)
p += parseUtils.parseFloat(s, value, p)
echo year, ": ", value # 2020: 2.5

In the above example, we used the module prefix, as sᴛʀᴜᴛɪʟs contains also a parseInt() and a parse
Float() function. The functions parseBin(), parseOct() and parseHex() behave similarly. Returned is
the number of processed characters. We add the returned value to the start position so that parsing
can continue at the new position.

There are some more functions available in this module, which we will not discuss further. It is
enough that you know that this module exists and provides some efficient parsing functions. When
ever you should really need one of these procedures, you would have to consult the API documen
tation for details.

Module strscans
The sᴛʀsᴄᴀɴs module provides a scanf() macro, which can be used to extract substrings from tex
tual user input. The content of the substrings is automatically converted to Nim variables of match
ing data types.

Processing well-defined strings is straightforward, and with user-defined matcher functions, even
text inputs of less strict formats can be processed.

Let’s start with a simple example: Suppose we need to create a program that allows the user to cre
ate rectangles by entering the coordinates of two opposite corners in the format:

Rect x1,y1,x2,y2

import std/strscans

var x1, y1, x2, y2: float
var name: string

let input = "Rect 10.0,20.0,100,200"

if scanf(input, "$w $f,$f,$f,$f", name, x1, y1, x2, y2):
 echo name, ' ', x1, ' ', y1, ' ', x2, ' ', y2 # Rect 10.0 20.0 100.0 200.0

The first parameter for the scanf() macro is the user input string, while the second parameter is a
pattern string that specifies how the input string should be processed. The following parameters
are variables that get the results of the input evaluation. The second parameter has some similari
ties with a regular expression. The letters after the dollar sign specify the data type of the sub
strings, $i or $f ask to process an integer or a floating-point number, and $w requests to process an
ASCII identifier. Other characters are captured verbatim, meaning the space character after $w

248

must match a space in the input string, and the comma characters separating the $f must align
with commas in the input string. The scanf() macro supports capturing some more data types, i.e.
$c for an arbitrary character or $s for optional white space. The optional white space is not cap
tured, just ignored. With the use of $s, our program already allows a more flexible input string:

let input = "Rect10.0, 20.0,100,200"

if scanf(input, "ws$f,$s$f,$s$f,$s$f", name, x1, y1, x2, y2):
 echo name, ' ', x1, ' ', y1, ' ', x2, ' ', y2 # Rect 10.0 20.0 100.0 200.0

To allow processing even more flexible input strings, it is possible to use user-definable matchers
in the form of Nim procedures with a well-defined parameter signature. There are two different
types of matcher procs supported — matchers to just skip a part of the input string, and capturing
matchers. For the next example, we will use a procedure which can skip various separators like
commas, semicolons, or white space. And we will use a capturing matcher proc for the object
name.

import std/strscans

proc sep(input: string; start: int; seps: set[char] = {' ',',',';'}): int =
 while start + result < input.len and input[start + result] in {' ','\t'}:
 inc(result)
 if start + result < input.len and input[start + result] in {';',','}:
 inc(result)
 while start + result < input.len and input[start + result] in {' ','\t'}:
 inc(result)

proc stt(input: string; strVal: var string; start: int; n: int): int =
 if input[start .. start + "Rect".high] == "Rect":
 strVal = "Rect"
 result = "Rect".len

var x1, y1, x2, y2: float
var name: string

let input = "Rect 10.0 ;20.0,100 , 200"

if scanf(input, "${stt(0)}$sf[sep]f[sep]f[sep]$f", name, x1, y1, x2, y2):
 echo name, ' ', x1, ' ', y1, ' ', x2, ' ', y2 # Rect 10.0 20.0 100.0 200.0

The use of our user-definable matcher sep() allows separating the four numbers with a colon or a
semicolon with arbitrary leading or trailing white space, or with only white space. Multiple colons
or semicolons between two numbers, resulting from a typo, would not be permitted.

The signature for this matcher proc has this shape:

proc sep(input: string; start: int; seps: set[char] = {' ',',',';'}): int =

249

The first parameter is the string to process, while the second parameter signifies the starting posi
tion for processing. (In other words, the second parameter, of integer type, represents the actual
position in the input string; this position moves throughout the capturing process from the start to
the end of the input string. The end may not be reached if the capturing fails at some point.) The
last parameter has always the type set[char] with a default value indicating which characters that
procedure can process. Actually, a default value seems to be necessary, but the actual value seems
not to matter. The procedure returns the number of characters to be skipped. A return value of
zero is valid, indicating the provision for optional separators. In most cases, separators are neces
sary to process the input string, but we can imagine input formats where separators are optional,
e.g. when an integer number is followed by a name. A name never starts with a digit, so the bound
ary between the two values is well-defined. This non-capturing matcher procedure is invoked using
$[sep] in the pattern string.

The signature of the capturing matcher proc has this shape:

proc stt(input: string; strVal: var string; start: int; n: int): int =

This procedure also takes the input string and the start position as parameters, and it must return
the number of processed characters. But additionally, a var parameter of arbitrary data type is
used to return the result of the capture, and the last parameter with arbitrary data type can influ
ence the capturing process. One possible use of the last parameter is to use an integer value to limit
the maximum number of characters to process. This procedure is called in the pattern string by
using curly braces like ${stt(0)}.

Scanf() returns true, when all the parameters match, in that case, all the passed variables get
assigned a value. Currently, scanf() does not support the capturing of optional data, as the entire
process halts when a capture fails. This occurs, for instance, when $i is used to request an integer
value, but the input string lacks decimal digits at the current capture position. In the same way, the
whole capturing process stops when a user-defined capturing matcher returns zero, as no captur
ing is possible. So intermediate optional arguments are currently not supported. When the process
ing stops due to missing arguments, scanf() returns false, but the already processed captures still
have a valid value assigned. In this way, we can use at least optional trailing arguments.

As the next example for the use of the scanf() macro, we will give a real-world example: A simple
CAD (Computer-Aided Design) program has a PCB (Printed Circuit Board) mode, in which the user
can create new PCB pads by entering the pad data in a text entry widget. A PCB pad is a rectangu
lar-shaped copper field, which has an associated number and a name and maybe rounded corners.
The user should be able to input two 2D coordinates, the corner radius, an optional x/y translation
for the subsequent pad of the same size, the number of pads to create, and the pad number and
name. That is

pad x1 y1 x2 y2 r dx dy n num name

The first five arguments are mandatory, while the rest are optional, with default values. The user
should be able to separate the arguments using white space, a colon, or a semicolon. Additionally,
the values x2 and y2 can be preceded with a + character to indicate that the x2, y2 tuple is not an
absolute coordinate value, but the width and high of the pad.

250

A segment of the program to process this form of user input may look as follows:

import std/strscans

proc jecho(x: varargs[string, `$`]) =
 for el in x:
 stdout.write(el & " ")
 stdout.write('\n')
 stdout.flushfile

proc stt(input: string; strVal: var string; start: int; n: int): int =
 if input[start .. start + "pad".high] == "pad":
 strVal = "pad"
 result = "pad".len

proc pls(input: string; plusVal: var int; start: int; n: int): int =
 if input[start] == '+':
 plusVal = 1 # bool
 result = 1

proc sep(input: string; start: int; seps: set[char] = {' ',',',';'}): int =
 while start + result < input.len and input[start + result] in {' ','\t'}:
 inc(result)
 if start + result < input.len and input[start + result] in {';',','}:
 inc(result)
 while start + result < input.len and input[start + result] in {' ','\t'}:
 inc(result)

proc plus(input: string; plusVal: var int; start: int; n: int): int =
 result = sep(input, start)
 if input[start + result] == '+':
 plusVal = 1 # bool
 result += 1

var st: string
var x1, y1, x2, y2, dx, dy: float
var px2, py2: int # bool
var n: int
var number, name: string

(st, x1, y1, px2, x2, py2, y2, dx, dy, n, number, name) = ("pad", NaN, NaN, 0, NaN, 0,
NaN, NaN, NaN, 0, "", "") # defaults

var res: bool
var input = "pad 10.0, 10 12 +12.0 ;20 0 8 Num Name"

unfortunately the input start with "pad" is needed for unpatched strscan!

using the pls matcher, this fails when there is no '+'
res = scanf(input, "${stt(0)}$[sep]f[sep]f[sep]${pls(0)}$f$[sep]${pls(0)}$f

251

$[sep]$f$[sep]$f$[sep]$i$[sep]$w$[sep]$w", st, x1, y1, px2, x2, py2, y2, dx, dy, n,
number, name)
jecho(res, st, x1, y1, px2, x2, py2, y2, dx, dy, n, number, name)

using the plus matcher, so the '+' is optional
res = scanf(input, "${stt(0)}$[sep]f[sep]f{plus(0)}f{plus(0)}f[sep]f[sep]
f[sep]i[sep]w[sep]$w", st, x1, y1, px2, x2, py2, y2, dx, dy, n, number, name)
jecho(res, st, x1, y1, px2, x2, py2, y2, dx, dy, n, number, name)

input = "pad 10.0, 10 12 +12.0" # test with missing optional values
(st, x1, y1, px2, x2, py2, y2, dx, dy, n, number, name) = ("pad", NaN, NaN, 0, NaN, 0,
NaN, NaN, NaN, 0, "", "") # defaults
using the plus matcher, so the '+' is optional
res = scanf(input, "${stt(0)}$[sep]f[sep]f{plus(0)}f{plus(0)}f[sep]f[sep]
f[sep]i[sep]w[sep]$w", st, x1, y1, px2, x2, py2, y2, dx, dy, n, number, name)
jecho(res, st, x1, y1, px2, x2, py2, y2, dx, dy, n, number, name)

When we compile and run this program, we get this output:

false pad 10.0 10.0 0 nan 0 nan nan nan 0
true pad 10.0 10.0 0 12.0 1 12.0 20.0 0.0 8 Num Name
false pad 10.0 10.0 0 12.0 1 12.0 nan nan 0

The first scanf() call uses the sequence $[sep]${pls(0)}, which fails when the float value has no lead
ing + sign, so this call is of no real use. The second and third scanf() call uses instead a ${plus(0)}
call, where the plus() proc processes the separators as well as the optional + character, so that proc
has never to return zero, and the capturing process continues. For the last scanf() call, we provide
only five values as input, so scanf() returns false. However, the first five values are assigned, and
the rest take on default values. One restriction of the above code is that we must always start the
input string with pad; otherwise, the processing stops immediately. As scanf() does not support the
capture of boolean values, we use the integer data type for the variables px2 and py2. The value zero
means that there is no + prefix, and 1 indicates that there is a plus prefix.[2]

The next tiny example shows how we can use the last parameter of the user-defined matcher proce
dure to control the matching process:

import std/strscans

proc ndigits(input: string; intVal: var int; start: int; n: int): int =
 var i, x: int
 while i < n and i + start < input.len and input[i + start] in {'0'..'9'}:
 x = x * 10 + input[i + start].ord - '0'.ord
 inc(i)
 # only overwrite if we had a match
 if i == n:
 result = n
 intVal = x

252

var input = "1234"
var a, b: int

if scanf(input, "${ndigits(2)}$s${ndigits(2)}$.", a, b):
 echo "Input is OK:", a, " ", b

We want to capture two integer values, each with one or two decimal digits. By passing the upper
limit of digits to the ndigits() procedure, we get the intended result even when the user does not
separate the two numbers with white space. Additionally, we have used $. at the end of the pattern
string. The $. matches only when the end of the input string is reached, so that scanf() would
return false if there are more characters in the input string left.

The latest version of the sᴛʀsᴄᴀɴs module also provides a variant of the scanf() macro called scanT
uple(), which returns a tuple. We could use it in this way in our example above:

let (res, a, b) = scanTuple(input, "${ndigits(2)}$s${ndigits(2)}$.", int, int)
echo res, " ", a, " ", b

Thus, we do not need to declare the capturing variables in advance. The final result of the scan
process is returned in an additional boolean variable. When we use user-defined matchers as
above, we have to specify the data types of the returned values as additional parameters after the
pattern string.

Additionally, the sᴛʀsᴄᴀɴs module provides a scanp() macro, which works somewhat similar to PEG
or RegEx libraries. We will not try to explain the scanp() macro, as its use may be too difficult for
the start of a beginner book. If we need to process text strings with regular expression grammars,
we can utilize the available RegEx or PEG modules, which have no restrictions and function simi
larly to those in other programming languages. We will introduce the Nim RegEx and PEG modules
later in the book — maybe we will compare the scanp() macro there.

Module strformat
With the fmt() macro from the sᴛʀғoʀᴍᴀᴛ module, we can format and interpolate strings, similar to
the use of f-strings in Python3.

import std/strformat
from std/strutils import `%`
var lang = "C"
var year = 1972
stdout.write "The programming language ", $lang, " was created in ", $year, ".\n"
echo "The programming language " & $lang & " was created in " & $year, "."
echo "The programming language $# was created in $#." % [$lang, $year]
echo fmt"The programming language {lang} was created in {year}."
The programming language C was created in 1972.

Of the four ways to print some text, the last one with fmt() is the shortest and perhaps the cleanest.
As fmt() is a macro, which is processed at compile-time, there is no unnecessary run-time overhead

253

involved. A small restriction of fmt() is that its argument is regarded as a generalized raw string lit
eral. So, we cannot use escape sequences like "\n" in the string literal. But the sᴛʀғoʀᴍᴀᴛ API docs
mention various solutions for this: We can use the unary & operator instead of the fmt() call, or we
can use the notations {'\n'}, fmt() or "".fmt.

import std/strformat
var lang = "Fortran"
var year = 1957
stdout.write &"The programming language {lang} was created in {year}.\n"
stdout.write fmt"The programming language {lang} was created in {year}.{'\n'}"
stdout.write fmt("The programming language {lang} was created in {year}.\n")
stdout.write "The programming language {lang} was created in {year}.\n".fmt
The programming language Fortran was created in 1957.

The fmt() macro also works with multi-line raw strings:

import std/strformat
echo fmt"""This is a {1 + 1 + 1} lines
multiline
string."""

The fmt() macro accept a few directives for the formatting of integer and floating-point numbers
like

import std/strformat
var pi = 3.1415
var people = 123
echo fmt"The number{pi:>8.2f} is called PI by {people:>8} people."

The basic pattern is that the numeric variable is followed by a colon and the total number of
desired characters. We can precede the number with a < or > to indicate left or right alignment, and
for floating-point numbers, we can use a notation similar to that used for printf() in the C language:
n.mf stands for a float formatted with n characters total and m decimal places. As in C, we can use e
instead of f to indicate scientific notation. If the value which specifies the total number of charac
ters starts with a zero digit, then the formatted number uses zeros instead of spaces for leading dig
its. And X after the colon generates hexadecimal value for integer numbers.

A useful property of the fmt() macro is that we can put an equal sign into the curly braces to get the
initial expression both as a string and as an interpolated value, as in:

import std/strformat
var pi = 3.1415
echo fmt"{2 * pi = }" # 2 * pi = 6.283

This is similar to the dump() macro from the sᴜɢᴀʀ module and is mostly used for debugging pur

254

poses.

To use curly braces as literals in a fmt() argument, we can use character literals with a backslash as
we did to include a newline character, or we can use an extended fmt() macro with two additional
arguments, which specify the two characters that should be used instead of {} to mark the expres
sion that should be interpolated:

import std/strformat
echo fmt"{2} curly braces {'\{'} {'\}'}." # 2 curly braces { }.
echo "three time three is <3 * 3>".fmt('<', '>') # three time three is 9

We will not try to explain all these various formatting options in detail, as it is really hard to
remember. It is enough that you know that these options exist, so you can consult the API docs for
details when you would need them.

Note that we will discuss the performance of various methods for parsing strings (CSV data) in the
second half of the book, see Parsing data files (in parallel).

References:

• https://nim-lang.org/docs/strutils.html

• https://nim-lang.org/docs/parseutils.html

• https://nim-lang.org/docs/strscans.html

• https://nim-lang.org/docs/strformat.html

• https://en.wikipedia.org/wiki/Regular_expression

• https://en.wikipedia.org/wiki/Parsing_expression_grammar

• https://en.wikipedia.org/wiki/Perl_Compatible_Regular_Expressions

[1] And in case you find out for what this SkipTable is used, let us know :-)

[2] The careful reader may notice that we forget to process the float value for the corner radius in this example.

255

https://nim-lang.org/docs/strutils.html
https://nim-lang.org/docs/parseutils.html
https://nim-lang.org/docs/strscans.html
https://nim-lang.org/docs/strformat.html
https://en.wikipedia.org/wiki/Regular_expression
https://en.wikipedia.org/wiki/Parsing_expression_grammar
https://en.wikipedia.org/wiki/Perl_Compatible_Regular_Expressions

Arrays and sequences
Together with strings, arrays and sequences are the most important built-in containers for the Nim
language. We have already learned that arrays, strings, and sequences have value semantics in
Nim; that is, an assignment always copies the content and does not create an alias. While arrays
have a fixed size defined already at compile-time, sequences are like strings of dynamic size and
can grow when we append more elements. As arrays have a fixed size, they can be allocated on the
stack, while for sequences due to their dynamic size, the actual data buffer has to be allocated on
the heap. We explained some details about sequences already in Part II of the book. One important
aspect was that sequences use a continuous data buffer with a fixed capacity to store the actual ele
ments. When that data buffer is fully occupied, and we try to add more elements, then a new larger
buffer is allocated on the heap, and the contained elements have to be copied from the old to the
new, larger buffer before the old buffer can be deallocated.

When we pass arrays or sequences to procedures, then we can use the special data type openArray
when we define the proc, to allow passing both arrays and sequences. Note that this is very differ
ent from generic procedures: When we define a generic proc, then the compiler creates a new proc
instance for each of the generic data types that we use, so when we call a generic proc, which
accepts floats and signed and unsigned integers, and we call it a few times with float and with
signed integer arguments, then the compiler has to create two distinct instances of the proc. For
openArray parameters, only one proc instance is necessary at all times, as sequences behave like
arrays in many ways. Both use a continuous block of memory, where the elements are stored, and
the position of an entry is given by the start address of this memory block and an offset given by
the index multiplied by the size of an array element. So when passing the actual parameter to the
proc, the compiler passes the array and the data section of the sequence in the same manner. Both
can be passed by copy or by address. The compiler also passes the actual size, the lower index is
always zero for openArrays. Of course, when we pass a seq as openArray, there are some restrictions,
e.g. we could not add elements in the proc, as the passed variable behaves like an array.

The memory layout of sequences and strings is very similar; both have length, capacity, and a data
buffer on the heap. Some procs that work on the data structure have the same names, such as
add(), len(), and setlen(), and both support operators like [], &, and .. for access to single elements,
and for concatenation and slicing.

Some often used functions and operators for sequences and arrays are defined in the sʏsᴛᴇᴍ mod
ule, like creating new sequences, converting arrays to sequences, joining sequences, or adding ele
ments to them. Other important functions, operators and iterators, are defined in the sᴇǫᴜᴛɪʟs
module, which we describe in the next section.

var s0: seq[int]
var s1: seq[int] = newSeqOfCap[int](2)
var s2: seq[int] = newSeq[int](2)

s0.add(3)
s0.add(5)
s1.add(3)
s1.add(5)
s2[0] = 3

256

s2[1] = 5
echo s0; echo s1; echo s2 # @[3, 5] for each

We can initialize sequences by a call of newSeq(), newSeqOfCap(), or not at all. When we use
newSeq(n), we get a seq with n elements, initialized to binary zero each, and we then can just over
write the elements by use of the subscript operator [], which is faster than appending elements
with add() to an empty seq. With newSeqOfCap() we can allocate a seq of size zero, but with a buffer
size of that specified capacity. We can append elements by calling the add() function, and as long as
we append no more elements than specified in the newSeqOfCap() call, we can avoid reallocations
of the internal seq buffer. When performance is not that critical, we can just use an uninitialized
seq and add() elements — when the default capacity is exhausted, a reallocation occurs, generally
with doubled data buffer size.

We can use the overloaded add() procedure to append single elements or to append a whole array
to a seq, and the & operator is available to join two sequences:

s0.add([7, 9])
s0 &= s1
s1 = s0 & s2
echo s1 # @[3, 5, 7, 9, 3, 5, 3, 5]

We can use len() to query the length of a seq, and setLen() to set a new length. In most cases,
setLen(n) is used to shorten a seq, that is, to keep the first n elements, but we can also use setLen() to
increase the length of a seq. In that case, the new entries get the value binary zero as default, and
we can use the subscript operator [] to fill in the actual content. Increasing the length with setLen()
may cause a reallocation if the current capacity is not sufficient. Functions low() and high() are
available to get the lowest and the highest index position of an array or a seq. As arrays can have
negative indices, low() can be less than zero for arrays, but for sequences and openArray proc para
meters, low() is always zero.

Module sʏsᴛᴇᴍ also provides the @ array to seq operator:

var i = 7
var j = 9
var s0 = @[1, 2]
s0 = s0 & @[i, j] # don't use this variant!
s0.add([i, j]) # faster
echo s0 # @[1, 2, 7, 9, 7, 9]

Note that the code in line 4 would be really slow, as it would have to allocate a temporary seq. Using
add() to add a temporary array to the seq should be faster.

Slicing is also supported by the sʏsᴛᴇᴍ module:

var s0 = @[1, 3, 5]
var s1 = s0[1 .. 2] # @[3, 5]
for el in s0[1 .. 2]: # may create a copy of the seq

257

 echo el

Note that line three may create a temporary copy of the sequence, which may not be that nice for
optimal performance. We discussed that topic already in Part II of the book, Nim 2.0 may improve
the situation further by introducing views, which create no copies. Besides the s[a .. b] slice oper
ator which includes the elements at position a and b, there is s[a ..< b] which does not include
position b and s[a .. ^b] where position b is taken from the end of the seq or array, e.g. ^1 is the last
position, ^2 the second last.

For deleting elements from a sequence, we have del(), which replaces the element at the specified
position with the last element of the seq and reduces the seq length by one, and the delete() func
tion, which shifts all elements after the specified position one step forward. Obviously, the latter is
slower, but it preserves the order of elements. The function pop() deletes and returns the last item
of a seq. When using pop() on an empty seq, we may expect a raised exception. With insert(), we can
insert an item at the specified position by moving all the elements after this position upwards. Note
that del(), delete(), pop() and insert() are not available for arrays.

Comparison of two arrays or sequences by the == operator returns true when the length, as well as
all contained items, match.

With the function contains(), we can test if an item is contained in a seq or an array. We can also use
the operators a in b and a notin b instead. The elements are tested from the start of the container
until a match is found or the last position in the container is reached, so this is an O(n) operation.

Module sequtils
This module defines some useful procedures, iterators, and templates, for working with arrays
and sequences. Some functions of module sᴇǫᴜᴛɪʟs use a generic openArray parameter, and so can
be used for strings as well. While the max() and min() procedures are available from the sʏsᴛᴇᴍ
module, the minIndex() and maxIndex() procedures are provided by sequtils:

import std/sequtils
var s = @[7, 3, 5]
echo s.min, " ", s.max # 3 7
echo s.minIndex, " ", s.maxIndex # 1 0

Sometimes, we may need a minmax() procedure that gives us both values, but it is currently not
available. We have to create it ourselves if needed. When performance is not that critical, we can
call min() and max() separately.[1]

The functions minIndex(), maxIndex(), count(), and deduplicate() can also work with strings:

import std/sequtils
var s = @[3, 5, 1, 7, 3, 3, 5]
echo s.count(5) # 2
echo s.deduplicate # @[3, 5, 1, 7]

258

echo "abc".maxIndex() #2

The function name deduplicate() is a bit irritating, as the function does not work in place. We might
expect the name deduplicated(), similar to sort() and sorted(). Other programming languages use
the name uniq() instead. Deduplication is easy when the elements are sorted, as for that case we
can just iterate over the seq and ignore equal adjacent items. That is why deduplicate() accepts an
optional boolean parameter indicating if the seq is sorted. If the seq is not sorted, it is necessary to
create a temporary set to store the already seen items, so that they can be ignored the next time
when they occur again in the seq.

The function concat() can join multiple sequences (yes only sequences, it does not work with arrays
currently), maybe that is more efficient than using the & operator. And insert() can insert a new
value at a position by shifting the following items, and delete() allows removing a range of items
from the seq when we specify two index positions:

import std/sequtils
var s: seq[int]
s = concat(@[1, 2], @[3, 4], @[5, 6])
echo s # @[1, 2, 3, 4, 5, 6]
echo @[1, 2] & @[3, 4] & @[5, 6] # @[1, 2, 3, 4, 5, 6]
s.insert(7, 2)
s.delete(3, s.high)
echo s # @[1, 2, 7]

Proc repeat() is used to create a seq, which contains a single value multiple times, and cycle()
repeats the items of an existing seq multiple times:

import std/sequtils
echo 2.repeat(4) # @[2, 2, 2, 2]
echo @[1, 2].cycle(3) # @[1, 2, 1, 2, 1, 2]

A bit more complicated, but really useful are functions like map(), filter(), keep(), and the corre
sponding …It() templates:

import std/[sequtils, sugar]
var s = (0 .. 9).toSeq
echo s.map(proc(x: int): int = x * x) # always @[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
echo s.map(x => x * x) # from sugar module
echo s.mapIt(it * it)

echo s.mapIt("*" & $it & "*") # @["*0*", "*1*", "*2*", "*3*", "*4*", "*5*", "*6*",
"*7*", "*8*", "*9*"]

echo s.filter(proc(x: int): bool = (x and 1) == 0) # both @[0, 2, 4, 6, 8]
echo s.filterIt((it and 1) == 0)

259

The map variants return a new seq, with an operation performed on all items. The returned seq can
have a different base type. In line 4, we used the ⇒ operator from the sᴜɢᴀʀ module for a simpler
notation

The filter() variants apply a proc with boolean result type on the seq items and return the items for
which the result is true. It may not be easy to remember whether the elements for which the proce
dures gives a true result are returned or removed from the initial seq. It helps to remember that fil
ter() behaves like the keepIf() procedures — items with positive results survive.

import std/[sequtils, sugar]
var s = (0 .. 9).toSeq
var s1 = s
s1.apply(x => x * x) # @[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
s1 = s
s1.keepIf(proc(x: int): bool = (x and 1) == 0) # @[0, 2, 4, 6, 8]

In the above code, we used toSeq() with a slice argument to create an initial sequence with continu
ous integers from the slice. The apply() function performs a transformation operation on all the
items, and keepIf() preserves only the items for which a boolean predicate evaluates to true.

The function keepItIf() is useful to delete selected items from a seq. Remember that applying the
ordinary delete operations del() or delete() while iterating with a for loop over a seq does not work.
You can loop over the seq as in the example below instead, or just use keepItIf():

var s = @[0, 1, 2, 3]

#[
for i, el in pairs(s):
 if (el and 1) == 0: # delete the even numbers
 s.delete(i) # results in a runtime error
]#

var i = 0
while i < s.len:
 if (s[i] and 1) == 0: # delete the even numbers
 s.delete(i) # use faster del() if order of seq does not matter
 else:
 i += 1
echo s

s = @[0, 1, 2, 3]
import std/sequtils
s.keepItIf((it and 1) != 0)
echo s

Two useful predicate functions, any() and all(), check if at least one item fulfills a condition or if all
items fulfill a condition, respectively:

260

import std/sequtils
var s = (0 .. 9).toSeq
echo s.all(proc(x: int): bool = x < 10) # true
echo s.any(proc(x: int): bool = x * x == 25) # true

With zip(), we can join the items of two sequences to tuples, and with unzip(), we can separate the
tuple items again in two separate sequences:

import std/sequtils
var s = (0 .. 9).toSeq
var s1 = s.mapIt(it * it)
var z = zip(s, s1)
echo z
echo z.unzip
@[(0, 0), (1, 1), (2, 4), (3, 9), (4, 16), (5, 25), (6, 36), (7, 49), (8, 64), (9,
81)]
(@[0, 1, 2, 3, 4, 5, 6, 7, 8, 9], @[0, 1, 4, 9, 16, 25, 36, 49, 64, 81])

Finally, sometimes the templates foldl() and foldr() can be useful for folding a sequence — that is,
to generate one final value from all the items. The fold templates use the variables a and b to gen
erate the result, a + b would sum all the items. Foldl() performs the operation from left to right,
returning the accumulation and accepts an optional start value, while foldr() starts from the right,
i.e. with the item at the end of the seq.

import std/sequtils
var s = (0 .. 9).toSeq
echo s.foldl(a + b, 100) # 145
echo s.foldr(a + b) #45

The sᴇǫᴜᴛɪʟs module contains some more procedures, templates, and macros that are not needed
that often. It would not make much sense to mention all of them here, as it is already not easy to
remember the ones that we have introduced above. You should skim the sequtils API docs from
time to time to remember what is available.

Maybe you have missed the difference between two sequences, which some other programming
languages provide:

[1, 2, 3, 4, 1, 5] - [2, 4] # [1, 3, 5]

Well, that is an expensive operation, O(n^2) if implemented in a naive way, as it may iterate for all
items in the second seq over the whole first seq to remove the unwanted items. A better approach is
to convert the items in the second seq to a temporary (hash) set to allow a faster query:

A fast on-the-fly solution is this, as suggested by someone in the Nim forum:

261

import std/[sequtils, sets, sugar]
let a = [1, 2, 5, 2, 9, 7, 0]
let b = [7, 4, 1, 10, 7]
let bSet = b.toHashSet()
echo a.filter((x) => x notin bSet) # @[2, 5, 2, 9, 0]

When we should need this operation frequently, we may define our own procedure like

https://ruby-doc.org/core-2.6/Array.html#method-i-2D
Array Difference
import std/sets

proc `-`*[T](a, b: openArray[T]): seq[T] =
 let s = b.toHashSet
 result = newSeq[T](a.len)
 var i = 0
 for el in a:
 if el notin s:
 result[i] = el
 inc(i)
 result.setLen(i)

proc `-=`*[T](a: var seq[T]; b: openArray[T]) =
 let s = b.toHashSet
 var i = 0
 var j = 0
 while i < a.len:
 if a[i] notin s:
 a[j] = a[i]
 inc(j)
 inc(i)
 a.setLen(a.len - (i - j))

proc main =
 let a = [1, 2, 5, 2, 9, 7, 0]
 let b = [7, 4, 1, 10, 7]
 echo a - b
 echo b - a

 var x = @a # apply the "to_seq" operator @ on array a to get a seq
 x -= b
 echo x

main()

@[2, 5, 2, 9, 0]
@[4, 10]

262

@[2, 5, 2, 9, 0]

Note that this preserves the order in the first seq, which is often requested. If the order is not criti
cal, then we could convert both sequences to a set, and build the set difference — but when order
does not matter, we may use sets instead of sequences from the beginning.

Perhaps you also missed a shift() function, which other container types or programming languages
may provide. That function would be used similarly to pop(), but it deletes and returns the first
item of a seq. Well, it should be obvious why a shift() is not provided by default, and why such a
function would generally be avoided — the function name gives you already a good hint. And if you
should need such a function, it should be no problem to implement one, if efficiency is really not
critical. But possibly, in that case, it would be better to use a different container type, maybe the
double-ended queue, provided by the ᴅᴇǫᴜᴇs module.

References:

• https://nim-lang.org/docs/sequtils.html

• https://forum.nim-lang.org/t/7753#49189

[1] A nimMax() is supposed to be faster than separate min() and max() calls, as minMax() would have to iterate through all the
items in RAM only once.

263

https://nim-lang.org/docs/sequtils.html
https://forum.nim-lang.org/t/7753#49189

Random numbers
Most computer programs work fully deterministically; that is, one input data set generates exactly
one well-defined output data set. This behavior is not desired when we create games or simula
tions: The actions of computer-controlled characters should not do exactly the same, again and
again, when we restart the game, and perhaps the computer-generated landscape in the game
should look differently when we restart the game too.

To generate such an unpredictable behavior, we use random number generators, which can gener
ate sequences of random numbers of integer or float types. The most significant property of truly
random numbers is that we cannot predict the next one from the sequence of all values seen
before. Random number sources have no memory! Children often think they do. If a child got the
number "6" in a dice game three times in sequence, it typically assumes that it is extremely unlikely
that the next roll will give again this value. But as the dice have no memory, the chance to get a spe
cific number is always 1/6, as we have 6 possible values, all with the same probability. At least when
the dice are not manipulated. Another significant property of random numbers is the distribution
of the possible values. For most random number sources, we would expect a uniform distribution
of all possible values: For a die with numbers 1 .. 6, we would expect that we get all these numbers
with nearly the same total quantity when we roll the dice for a long time again and again. However,
not all random quantities are distributed uniformly. The distribution can have different shapes. An
important non-uniform distribution is the Gaussian distribution, where the final result depends on
many random factors. So an average value is more likely than extreme values. You may know the
marble nail board, with multiple slots as an example: Marbles are thrown in at the top, and when
ever they hit a nail, they get distracted to the left or right.

To build a perfect random number generator, we would have to use some physical noise sources,
like photons emitted by a thermal light source falling on a light detector with single-photon resolu
tion (Photo-multiplier), radioactive decay, thermal noise, or similar physical entropy sources. But
using real physical sources for random numbers is difficult, and the random number generation is
slow. So in computer programming, we generally use so-called pseudo-random-numbers, which are
sequences of numbers calculated based on a given starting number. A mathematical function gets
the last n numbers seen before and generates the next one from that. If that function uses a smart
mathematical expression, its results look really like random numbers. For games, the generated
sequences are typically good enough, for cryptographic applications, they may not be good enough.
So what we need for a random number generator is a sequence of start numbers and a mathemati
cal function with an internal state. For each call of that function, a new random number is returned
and the internal state is changed so that the next call will result in a different number. When we
always use the same sequence of starting numbers, then our generator would always generate the
same sequence of random numbers. Sometimes this is desired, e.g., when we want a behavior that
looks random but is reproducible, perhaps for debugging tasks. However, in most cases, we would
use starting numbers that are different for each program start. To get well-suited start numbers, we
can just use the current time with nanosecond resolution, which most computer hardware does
provide.

Most simple and fast random number generators use only two integer numbers for their internal
state. From these two numbers, the next random value is calculated, and then the numbers repre
senting the internal state are modified also, to ensure that the next generated number is again dif
ferent.

264

Nim uses in its ʀᴀɴᴅoᴍ module an implementation of the xoroshiro128+ (xor/rotate/shift/rotate)
library. A Rand object, with two integer fields, is used to store the actual state, and some simple and
fast logic operations such as bit shift, logical xor, and addition are used to update the internal state
and generate the next number:

when defined(js):
 type Ui = uint32
 const randMax = 4_294_967_295u32
else:
 type Ui = uint64

type
 Rand* = object # State of a random number generator.
 a0, a1: Ui

proc rotl(x, k: Ui): Ui =
 result = (x shl k) or (x shr (Ui(64) - k))

proc next*(r: var Rand): uint64 =
 let s0 = r.a0
 var s1 = r.a1
 result = s0 + s1
 s1 = s1 xor s0
 r.a0 = rotl(s0, 55) xor s1 xor (s1 shl 14) # a, b
 r.a1 = rotl(s1, 36) # c

The Rand object stores the internal state, rotl() is a helper function, which updates the state for each
call, and next() is the actual generator procedure returning an uint64 value. Note that the addition
used in next() does wrap around instead of giving an overflow error, as unsigned integers are used.
The numbers returned by the rand() proc are the foundation for all the other random number
types provided by the ʀᴀɴᴅoᴍ module. To get integers with reduced numeric range, we can just use
the modulo operation, and to get float results, we may convert the integer value to float and apply
some basic mathematical operations like division for a range reduction.

The most basic functions provided by the ʀᴀɴᴅoᴍ module are the overloaded rand() functions.
Rand() called with an integer parameter n gives us integer random numbers in the range from 0 up
to n, and rand() called with a float parameter x will give us random float numbers in the range 0
.. x. When we just use the rand() functions in this way, we would get the same sequence of num
bers for each run of our program, as the generator always starts with the same well-defined initial
state. We can call the randomize() procedure before calling rand() to initialize the generator to a
different state based on the current time. Then rand() will provide us with different number
sequences for each start of our program.

Generally, it is a good idea not to use the single internal global state of the ʀᴀɴᴅoᴍ module for the
generation of our random numbers but to use our own state variable instead. That way, we prevent
conflicts with other modules, which may use the ʀᴀɴᴅoᴍ module as well. Imagine that we want to
get the same sequence of random numbers for each run of our program, as we are debugging our
game, but another module initializes the internal state of module ʀᴀɴᴅoᴍ with a value based on the

265

current time.

So the module ʀᴀɴᴅoᴍ provides overloaded rand() functions that get a state variable:

from std/times import getTime, toUnix, nanosecond
import std/random

let now = getTime()
var rstate = initRand(now.toUnix * 1_000_000_000 + now.nanosecond)

for i in 0 .. 5:
 echo rstate.rand(5) + 1 # dice roll

for i in 0 .. 2:
 echo rstate.rand(100.0) # float random number in range 0.0 .. 100.0

Unfortunately, the initRand() call to initialize it with a current time value is a bit complicated, as we
have to provide the current time value directly. Note that you typically should call initRand() only
once in your program. A common mistake beginners make is to call initRand() each time directly
before the rand() call. That is not only not needed and slows down the generation process, but it
also can lead to strange number sequences.

At the end of this section, we will discuss the problem of filling a container with random and
unique numbers. For example, assume that we want to generate a sequence of 100 random num
bers in the range 1 .. 100, with the restriction that each number should occur exactly once in the
sequence. Of course, a code segment like s[i] = (rand(99) + 1) would not work, as the same num
bers could be generated multiple times or not at all. The obvious solution for this task is to first fill
an array with consecutive numbers 1 to 100 and then exchange the initial positions with destination
positions determined by rand(99) The ʀᴀɴᴅoᴍ module provides the shuffle() function for this shak
ing of a container. A related function is sample(), which is used to randomly select an element from
an openArray or a set.

References:

• https://en.wikipedia.org/wiki/Random_number_generation

• https://en.wikipedia.org/wiki/Applications_of_randomness

• https://en.wikipedia.org/wiki/Pseudorandom_number_generator

• https://nim-lang.org/docs/random.html

• https://prng.di.unimi.it/

266

https://en.wikipedia.org/wiki/Random_number_generation
https://en.wikipedia.org/wiki/Applications_of_randomness
https://en.wikipedia.org/wiki/Pseudorandom_number_generator
https://nim-lang.org/docs/random.html
https://prng.di.unimi.it/

Timers
Sometimes, we may want to measure the execution time of a code segment of our program. For this,
the Nim standard library provides various modules, including the larger ᴛɪᴍᴇs module, and the
ᴍoɴoᴛɪᴍᴇs module. The ᴛɪᴍᴇs module provides many functions and data types for handling dates
and times, while the small ᴍoɴoᴛɪᴍᴇs module is more specialized for measuring time intervals. For
our first test, we will use the times.cpuTime() function and the monotimes.getMonoTime() function.
The former gives us time values as seconds in float format, while the latter returns an int64
nanosecond value. To measure the execution times of code segments, we take the current time at
the start and at the end of that segment and calculate the difference. Actually, we will try to mea
sure the time needed for a float square root calculation. In the past, calculating square roots was
considered a relatively slow operation, slow compared to a plain floating-point math operation like
multiplication or division. But on most modern hardware, as we will see, square root calculation is
actually really fast.

import std/[random, times, monotimes]
from std/math import sqrt

proc warmup =
 var x: float
 for i in 1 .. 1e10.int:
 x += 1.0 / i.float
 echo x

proc main1 =
 let x = rand(3.0)
 let y = rand(7.0)
 let start = cpuTime()
 let res = sqrt(x) + y
 let stop = cpuTime()
 echo stop - start
 echo res

proc main2 =
 let x = rand(3.0)
 let y = rand(7.0)
 let start = getMonoTime()
 let res = sqrt(x) + y
 let stop = getMonoTime()
 echo stop - start
 echo res

randomize()
warmup()
main1()
main2()

To get meaningful results, we have to take some care: What’s most important is that the code seg

267

ment we want to measure is actually executed. This may sound odd, but assume that the code pro
duces no noticeable result at all. In that case, the compiler may just remove that code fragment
from the generated executable, as it is not needed for correct program execution. Or assume that
the code fragment uses only data, which is already known at compile time. Then the compiler may
do all the calculations already at compile-time, and the whole code fragment is removed again and
replaced by the pre-calculated values. And finally, we have to remember that our computer may
execute other tasks at the same time or could be in various power-saving states, with reduced CPU
clock frequency, from which it takes some time to wake up. To take care of this, we try to execute
some warm-up code before our actual timing task, and we do use the rand() function from the ʀᴀɴ
ᴅoᴍ module to provide input values for our code that are not known during compile-time. Finally,
we output the result of the calculation using an echo() statement to make it clear to the compiler
that the result of the calculation is indeed needed. Now, let us compile and run this program. We
compile with option -d:release or -d:danger to enable optimizations and avoid the generation of
debugging code that may distort our timing. The result is still a bit surprising:

$./t1
23.6030665949975
4.98999998654881e-07
4.676567857718999
42 nanoseconds
8.527354349689125

Lines three and five are the results of our timing attempt. Both values are obviously too large and
do not match. The reason for the wrong results is overhead by the function calls itself. That over
head seems to be much larger for the cpuTime() call, as we get a result of about 500 nanoseconds.
Maybe the reason for this is, that cpuTime() works with floats internally. At least, we see that get
MonoTime() can measure time intervals in the range of a few hundred nanoseconds. When we run
the program a few times, the printed time intervals may vary. The reasons for that are internal
processes in the CPU, like clock rate and state changes. Generally, the smallest time value of multi
ple program executions is the most important for us, as that is the minimal time, which is actually
needed for the program execution. With this example, we have learned how we can measure time
differences in our program, and that measuring really small time intervals is difficult.

Fortunately, measuring such tiny time intervals is supported by the criterion package, which we
may describe in later sections of the book.[1]

For now, we will present another example program, where we measure program code with longer
running times. For that, we create a loop, that is executed many times. So the offset of the timer
function calls can be neglected compared to the actual running time of the loop, and due to the
longer running time, the printed time values become more reliable with low variations:

import std/[random, times, monotimes]
from std/math import sqrt

proc main3 =
 var s: array[64 * 1024, float]
 var res: float
 for i in 0 .. s.high:

268

 s[i] = rand(100.0)
 let start = getMonoTime()
 for i in 0 .. s.high:
 res += sqrt(s[i])
 let stop = getMonoTime()
 echo stop - start
 echo res

proc main4 =
 var s: array[64 * 1024, float]
 var res: float
 for i in 0 .. s.high:
 s[i] = rand(100.0)
 let start = cpuTime()
 for i in 0 .. s.high:
 res += sqrt(s[i])
 let stop = cpuTime()
 echo stop - start
 echo res

randomize()
main3()
main4()

For this example program, we first fill an array with 64k random float numbers and then sum the
square root of these numbers. As the total running time of our loops is not that tiny, we do not need
a special warm-up function, which is executed in front of the timed code. The output of our pro
gram shows that both timing functions match well for longer time periods:

$./t2
112 microseconds and 701 nanoseconds
436909.89897942
0.0001135580000000001 # 114 microseconds
437222.3001038401

The float result in line 4 is 114 microseconds, which matches well with the 112 microseconds from
line two. When you run this program multiple times, you may notice that you may sometimes get
much larger results for both or for only one of the two values. That is not surprising, as the com
puter is processing not only our program, but many more, and due to task switching, our program
can get suspended for some time. When we divide that 114 microseconds by the number of loop
iterations (64 * 1024) we get 1.7 nanoseconds, which is really surprisingly fast for a square root cal
culation. The concrete value is for a modern Intel I7 CPU. Of course, these 1.7 nanoseconds are not
only the time needed for the square root calculation, but it includes the operations with the loop
counter and the time needed to fetch and access the actual array elements.

As timing code segments is not an uncommon use case, there exists some external package that
improves or simplifies these operations, like the criterion or benchy package. A related task is pro
filing our program to find the part which takes the most CPU time so that we can concentrate on

269

these parts to improve the total performance of our program. For profiling, various tools like the
Linux Perf tool are available, which we will discuss in more detail later in this book.

References:

• https://github.com/LemonBoy/criterion.nim

• https://github.com/disruptek/criterion

• https://github.com/treeform/benchy

[1] Unfortunately, the original version https://github.com/LemonBoy/criterion.nim does not work with current Nim versions, and
the original author has lost interest.

270

https://github.com/LemonBoy/criterion.nim
https://github.com/disruptek/criterion
https://github.com/treeform/benchy
https://github.com/LemonBoy/criterion.nim

Hash tables
A common task in computer programming is the storing and retrieving of data records. The situa
tion is straightforward whenever each data record is directly mapped to consecutive integer num
bers n0, n0+1, n0+2, …, n0+M. In that case, we can use those numbers as index keys to access the
data records and store the data as objects or references to objects in a sequence, or, when the data
set is small and the maximum number of entries is known at compile time, in an array.

In the past, it was common practice to assign hardware parts in a shop and even customers a
unique ID number from a consecutive range, enabling storage and quick access in indexed contain
ers. This works well when we actually use the numbers as keys. However, we typically work with
data that is already labeled by names expressed as sequences of ASCII characters, such as cus
tomers in a hardware store or food in a supermarket. While it’s possible to assign ID numbers to
people, they generally do not appreciate having to remember their assigned ID numbers when
shopping online.

So let’s investigate how we can store and retrieve data objects without using consecutive numbers
as keys. Assume we have a customer database

type
 Customer = object
 lastName: string
 firstName: string
 age: int
 postalAddress: string
 phone: string
 credit: float

Of course, we can store the customers in a sequence, and conduct a linear search when we want to
access a person by name:

var customers: seq[Customer]

...

var found = false
for c in customers:
 if c.lastName == queryName:
 found = true
 echo "Person ", queryName, " has a credit limit of ", c.credit
if not found:
 echo queryName, "not found"

Such a plain linear search is not very fast, of course. An obvious improvement would be to sort the
customers by names, as we can do a so-called binary search in that case, as we did a long time ago
in printed telephone registers: Open the telephone book somewhere in the middle, and when the
names on that page are all greater than our friend’s name, then continue the search in the first half

271

of the book, otherwise in the last half. We continue the halving strategy until we find the name.
Given that we halve the data set with each step in this manner, we characterize the algorithm as
having a log2(N) cost, where log2 is the logarithm with base two and N represents the size of the
data set.

A similar solution would be to use some form of an ordered binary tree, which has also log2(N)
costs for retrieving operations. We will learn more about sorting sequences, doing a binary search
in a sorted sequence, and tree structures later in the book.

Hash tables permit fast access to data records by the use of arbitrary keys. A hash table, referred to
as simply table in Nim, is a homogeneous, resizable container that behaves similarly to Nim
sequences, but removes the restriction that the position of an element in the sequence must be
known for direct access.

The idea of a hash table is to use an arbitrary data type to directly access objects stored in a con
tainer, similarly as we can do it for arrays and sequences with integer keys. The first step is to use a
so-called hash function to map key objects, which are not already of integer type, to the integer
type. We would try to use a hash function that can be evaluated fast and which maps our data to
integer values distributed to the whole integer value space without clustering. The integers gener
ated by a hash() function somewhat resemble random numbers, as they are distributed over the
full range of integer values without any obvious order or system. Generally, mapping arbitrary
objects to integers is not difficult. For a string, an initial approach might involve treating the char
acters of the string in a similar way to how we calculate the value of a numeric literal: by summing
up the digits, each multiplied by powers of ten, according to their position. For a string that may
look like

intVal = uint(s[0]) * 256^0 + uint(s[1]) * 256^1 + uint(s[2]) * 256^2 + ...

We multiply with powers of 256 as we have 256 different ASCII characters.

That wouldn’t really be a good hash function, as all short strings would map to low integer values,
not distributed over the full value range. However, similar but more sophisticated hash functions
are available.

So a hash function can map arbitrary data types to integers. But what we really want is a sequence
of continuous integer values, which the hash functions do not provide by design. But that is no real
problem: In the same way, as we can do a range reduction for a random number generator function
generating random numbers using the full integer range by just applying a modulo operation, we
can apply the modulo operation on the value returned by a hash function.

Range reduction by modulo yields smaller integer numbers, which could potentially serve as index
values for an array or a sequence. With two restrictions: Index collisions can occur, as applying the
hash function and the modulo range reduction on different strings may give us the same index
value. And some index values may never be generated. The latter is not that serious, some positions
in the container would remain unpopulated. Collisions are much more serious of course, we have
to handle them somehow. One solution is to make each storage location in our container a sequence
once again, which can store all the colliding data sets. That way, our hash table would be a
sequence, where each element is again a short sequence containing all the colliding data records.

272

For a data retrieving operation, applying the hash function with modulo data reduction would give
us the position in the larger seq, and we then would have to check all the elements in the short seq
to find the actual record. In the best case, the short seq contains only one entry, when no collision
has occurred. For a customer database, this strategy could be indeed the best solution, as in rare
cases multiple different customers may have exactly the same name. So it would be nice if for
query operations in that case a list of all customers with exactly that name is returned.

In practice, a modified strategy is often applied to prevent a sequence within a sequence container
type: We use only one loosely populated sequence, and whenever a collision occurs, we simply
place the colliding data record at a free index position following the position determined by the
hash index value. That way, data retrieving starts by the position given by the hash key and then
checks the data record at that position and the following positions until a matching record or an
empty position is found, the latter case indicates that the queried data record is not contained in
the database. Storing data records works similarly: When the position given by the hash key is void,
then the new entry is stored at that position. If the index position is already occupied, then the fol
lowing positions are examined until a void one is found and the data is stored there.

Hash tables work well generally when they are not too densely populated. Typically, we make the
number of available index positions double the size of the number of expected entries. The chance
of collisions is then not too significant, and when a collision does occur, the probability is high that
one of the subsequent positions is still unoccupied.

When the population density becomes too high due to the insertion of more and more data records,
a new, larger table is typically allocated, and the data records are moved from the old table to the
new one, similar to how it is done for regular sequences when all capacity is utilized.

Now, let us see how we can use the ᴛᴀʙʟᴇs module of the Nim standard library to store the customer
record we introduced above:

import std/tables

type
 Customer = object
 lastName: string
 firstName: string
 yearOfBirth: int
 postalAdress: string
 phone: string
 credit: float

var customers: Table[string, Customer]

proc addNewCustomers =
 var c: Customer
 c = Customer(lastName: "Turing", firstName: "Alan")
 c.postalAdress = "England"
 c.yearOfBirth = 1912
 customers["Turing, Alan"] = c

273

 c = Customer(lastName: "Zuse", firstName: "Konrad")
 c.postalAdress = "Germany"
 c.yearOfBirth = 1910
 customers["Zuse, Konrad"] = c

proc queryCustomer(key: string) =
 if customers.hasKey(key):
 echo "known customer:"
 echo customers[key]
 else:
 echo "customer key not found in database"

addNewCustomers()

queryCustomer("Zuse, Konrad")
queryCustomer("Gates, Bill")

The basic usage of Nim Tables is very similar to the use of sequences. While we have to specify only
the base type for a Nim seq, we have to specify the type of the key and the type of the stored entities
for a hash Table. The line var customers: Table[string, Customer] defines a variable with a generic
Table type. The table uses strings as keys and stores Customer objects. We can then use the [] sub
script operator to store Customer objects in the Table. As we created a Table with string key type, we
have to specify strings when we use the subscript operator or other functions to access entries of
our table. For the query operation, we first call the function hasKey() to check if the customer with
that name is contained in the database and then use again the subscript operator to access the data
record.

The ᴛᴀʙʟᴇs module of the Nim standard library provides many more functions for interacting with
Tables. Most are easy to understand and use. When you inspect the API docs of the ᴛᴀʙʟᴇs module,
you will discover that besides the Table data type also a TableRef exists. The Table type has value
semantics; that is, if you copy a table instance, the entire content is copied. TableRef instances have
reference semantics, the content is not copied, when you assign one instance of a TableRef to
another variable.

In the example above, we called hasKey() to check if a data record is available before we accessed
that record. Access with the subscript operator [] would raise an exception when an entity is not
available in the table. HasKey() and [] both would have to locate the data record. A faster way to
access data records, when we’re uncertain if they exist in the table, is to use the getOrDefault() pro
cedure.

let dummy = Customer()
let query = customers.getOrDefault(name, dummy)
if query.lastName.len == 0: # we know all entries in the database have a lastName, so
we got the dummy default value
 echo name, "not found"
else:
 process(query)

274

A useful variant of the Table data type is the CountTable, which we can use to count data objects, e.g.
words in a text:

import std/tables
var ct: CountTable[string]
ct.inc("Nim")
ct.inc("Rust")
ct.inc("Nim")

echo ct["Nim"]
for k, v in ct:
 echo k, ": ", v

We will provide an extended example of using a CountTable to count words in a text file later in the
CountTable section.

A Table instance stores entries not in the order of insertion. When we iterate over the table, we get
the results not back in the order of insertion. If we really should need to preserve the insertion
order, we may use the OrderedTable variant. Note that an OrderedTable does not sort its entries, it
remembers the insertion order. Ordered Tables have some internal overhead, so we should use
them only when necessary.

For all the various table variants, we can use procedures like clear(), len(), or del() to remove all
entries from a table, check the number of entries, or delete specific entries. Note that some func
tions may throw exceptions when we try to access entries that are not available. Also, be aware that
the subscript operator =[] overwrites any existing entries.

For our initial customer database, the current table implementation might not be optimal, as it’s
unclear how to handle different customers with the same name. But customer databases are really
special cases, in most cases, different things have different names.

User-defined hash values
The ᴛᴀʙʟᴇs module uses the ʜᴀsʜᴇs module to calculate the hash value for the keys that we use to
access table content. For many data types, the ʜᴀsʜᴇs module already defines a hash function.
When we would like to use tuples or object data types as keys for table access, then we would have
to define a hash function for that key object first. The API documentation of the ᴛᴀʙʟᴇs module pro
vides an example of this, where an object data type with firstName and lastName fields serves as the
key to store salary entries in the table. While firstName and lastName are strings, and for single
strings a predefined hash function is available, we have to declare another hash function for
objects with two strings:

import std/[tables, hashes]

type
 Person = object
 firstName, lastName: string

275

proc hash(x: Person): Hash =
 ## Piggyback on the already available string hash proc.
 ##
 ## Without this proc nothing works!
 result = x.firstName.hash !& x.lastName.hash
 result = !$result

var
 salaries = initTable[Person, int]()
 p1, p2: Person

p1.firstName = "Jon"
p1.lastName = "Ross"
salaries[p1] = 30_000

The hash generation is a bit cryptic: First, we mix various existing hash values using the !& opera
tor, and finally we use the !$ operator to generate the final hash value. For details, please see the
API documentation of the ʜᴀsʜᴇs module.

Hash tables can be seen as a way to attach arbitrary data to other data. The above example attaches
a "salary" to a person object. In most cases, we would just create one more object field, when we
have to store more data, but sometimes that is not easily possible. One example is when we use a
low-level C library, which gives us some C objects back. Maybe we use an advanced C or C++ math
library like CGAL, and we get some abstract low-level objects from it, maybe circles with center
coordinates and diameter. As that objects are not Nim objects, but C or C++ entities, we can not eas
ily subclass them to attach more properties like a color attribute. But as each entity has a unique
address, we can just use a table with key type address and all the needed values, like color, as data.
That would be some overhead of course, as each color lookup would imply table access, but it is a
simple solution.

We can even attach properties to plain data types this way:

import std/tables

var t: Table[float, string]

let PI = 3.1415
t[PI] = "Pi"
t[2.0] = "two"

echo t[PI]
echo t[2.0]
echo t[5.0 - 3.0]

For floats, a predefined hash function is available, so the code above should work. But floats as
keys are a bit fragile due to the fact that float math is not really exact. So the last line in the above
code may raise an exception due to access of a non-existent entry, as the difference 5.0 - 3.0 may
not exactly be identical to the value 2.0.

276

Hash tables can be even useful containers when we already have numeric data as possible keys for
indices in a sequence: In mathematics, we could have a two-dimensional array, that is an array of
array in Nim, to store matrices. This is OK when the matrix is really populated, that is, most entries
have meaningful non-trivial values. But for very large, loosely populated matrices, with mostly just
zero or one entry, storing the complete matrix as a table using a row, column tuple as key, may save
a lot of RAM.

Equality and identity
When we use objects or references to objects as keys for tables, we have to remember how Nim
compares value and reference types:

import std/[tables, hashes]

type

 O = object
 i: int

 R = ref object
 j: int

proc hash(o: O): Hash = hash(o.i)

proc hash(r: R): Hash = hash(cast[int](addr(r[])))

var o1 = O(i: 7)
var o2 = O(i: 7)
var r1 = R(j: 13)
var r2 = R(j: 13)

echo o1 == o2
echo r1 == r2

var t1: Table[O, float]
t1[o1] = 3.1415
echo t1.hasKey(o2)

var t2: Table[R, float]
t2[r1] = 2.7
echo t2.hasKey(r2)

The output of the above program is

true
false
true

277

false

By default, the == operator compares content for value objects, but the instance addresses for refer
ences. Because of this, it makes sense to define hash functions for object types and ref object types
in a compatible way: We use the hash value of the single integer field of our value object as the
hash result for the entire object, and we use the address of the instance for the hash value of the
reference object. As different instances of ref objects have always different addresses, the hasKey()
does return false when we use as the argument a different instance variable, independent of the
content of its fields.

For special use cases, we may redefine the == operator, but we have to ensure that the defined hash
function matches the == operator: When a == b is true, then hash(a) has to be identical to hash(b)!
The reason is, that tables first compare the hash value of the query key with the key of entities in
the table, and only for a matching hash value do the comparison of the actual data content.

Performance
Hash table lookup is fast. We say that hash table lookup is an O(1) operation, which shall indicate
that the time needed for doing a table lookup does not depend on the total number of entries stored
in the table. The reason for this is that for a lookup, it’s necessary to calculate the hash value, do the
modulo operation, and access the table content and potentially a few of the following table entries
in the case that the first entry is not a match. Storing data is also an O(1) operation, as it works very
similarly, as long as the table is not already too densely populated so that a recreation is necessary.
In that case, the single storing operation can be very slow, but this situation occurs rarely, if at all,
when a sufficiently large table is used from the beginning. Still, small tables are much faster than
larger tables due to cache effects. For small tables, all data may fit into the caches of the CPU, while
for large tables most data is located outside of caches in RAM, and RAM access is magnitudes slower
than cache access.

However, hash table lookup is slower than an array or seq access. To access an element from an
array or seq, we only need to multiply the index value with the byte size of the stored element’s type
and potentially add an offset when the array does not start at index 0. For tables, we have to calcu
late the hash value, do the modulo operation, access some elements at the calculated position, and
most importantly, compare the content at that position with the actual key data. If the key is a
string, a few string comparisons (at least one) are necessary to determine if the query element is
available in the table. So while array access may take less than a nanosecond on modern hardware,
table lookup may take a few dozen of nanoseconds. Lookup with string keys is generally slower
than for other key types like integer, as for string comparison it is necessary to compare many
characters to get a result, and because strings generate some memory indirection by the fact that
string content is stored somewhere in the heap outside any cache.

Tuples or other containers as keys
At the end of our introduction to hash tables, we will present a very useful, but perhaps not that
obvious property of hash tables: The keys used for table access don’t have to be simple data types,
but can be container types like tuples or arrays. Imagine you have a map in 2D, with a set of points
on that map each presented by an x, y coordinate pair. These points could represent cities, and

278

some cities may have a direct road connection. So, how can we test if two cities are directly con
nected and determine the distance between them? With a hash table using a tuple of two city coor
dinates as key, it is easy:

import std/[tables, math]

const
 InvalidFloat = 1e30 # arbitrary marker that in not a valid value
 InvalidCoord = (InvalidFloat, InvalidFloat)

type
 Coord = tuple
 x: float
 y: float

 Cities = Table[string, Coord]
 Distances = Table[(Coord, Coord), float]

var cities: Cities
var distances: Distances

proc insertCity(name: string; coord: Coord) =
 cities[name] = coord

proc insertDist(a, b: string) =
 var (a, b) = (a, b)
 if a > b: swap(a, b)
 let ca = cities[a] # caution, will raise an exception if name is not a know city
 let cb = cities[b]
 distances[(ca, cb)] = math.hypot(ca.x - cb.x, ca.y - cb.y)

proc checkDirectConnection(a, b: string): float =
 var (a, b) = (a, b)
 if a > b: swap(a, b)
 let ca = cities.getOrDefault(a, InvalidCoord)
 let cb = cities.getOrDefault(b, InvalidCoord)
 if ca == InvalidCoord or cb == InvalidCoord:
 return -1 # marker when cities are unknown
 result = distances.getOrDefault((ca, cb), InvalidFloat)

insertCity("aTown", (2.0, 7.0))
insertCity("bTown", (2.0, 11.0))
insertCity("cTown", (17.0, 23.0))

insertDist("aTown", "bTown")

var d = checkDirectConnection("aTown", "bTown")
if d == -1:
 echo "query for unknown town"
elif d == InvalidFloat:

279

 echo "Cities have no direct connection"
else:
 echo "Distance: ", d

echo checkDirectConnection("bTown", "aTown") # 4, same as above
echo checkDirectConnection("aTown", "cTown") # 1e30
echo checkDirectConnection("aTown", "xTown") # -1

For the insertDist() and checkDirectConnection() procedures, we use a trick to ensure we get the
same results when we interchange the names: We sort the names alphabetically when we insert the
distances, and also when we query the distances. So we get the same result. Of course, we could
insert the tuple also twice instead, but as the distance is the same in both directions, sorting and
inserting only once makes some sense. Note that we used tuples for the coordinate pairs in the dis
tances tables. Maybe the more obvious data type would be an array with two entries, as the array
type is a container for homogeneous data, while a tuple can also contain different data types. But
currently, Nim supports tuples better in some situations, e.g. for automatic tuple unpacking. Thus,
we often use tuples even when an array would be the first choice, considering that the array type
offers the benefit of iteration over elements at runtime, while tuples provide the advantage of
accessing elements by names and by an integer constant. For performance, array or tuple should
make no difference here.

CountTable
We mentioned this data type already very briefly in one of the preceding sections, but as it really
can be very useful sometimes, we should show an extended example. The CountTable data type is a
variant of the ordinary Table type and is used to count instances of arbitrary data types, most often
strings or integers. The CountTable can use as keys the same data types as the ordinary Table, but its
value type is always an integer. Instead of using operators like []= to insert values into the table, we
use the inc() procedure to increase the occurrence counter for the key. In practice, the first call of
inc() adds the key to the table instance and sets its counter to one, while each subsequent call of
inc() with the same key increases the counter by one. A typical use case for CountTables is to count
the occurrences of words in a text file:

import std/tables

from std/strutils import split

proc main =
 const FileName = "t.nim"

 var t: CountTable[string]

 for l in FileName.lines:
 for w in l.split:
 t.inc(w)

 for k, v in pairs(t):
 echo k, " ", v

280

main()

When we compile and run the above program, we get for that source code this output:

▼ Click to see it

 30
main() 1
t.inc(w) 1
proc 1
split 1
const 1
main 1
var 1
in 3
strutils 1
from 1
v 2
", 1
FileName.lines: 1
= 2
import 2
t: 1
w 1
CountTable[string] 1
"t.nim" 1
FileName 1
l 1
pairs(t): 1
k, 2
" 1
for 3
l.split: 1
std/tables 1
echo 1

Counting words in text files can help us find rare spelling errors and words that we use too fre
quently, such as "generally", "problem", or "course", in this book. But for that application, we would
have to extend the code from the above, so that it ignores punctuation characters, and sorts the out
put. You should already be able to add that functionality yourself.

References:

• https://nim-lang.org/docs/tables.html

• https://nim-lang.org/docs/hashes.html

281

https://nim-lang.org/docs/tables.html
https://nim-lang.org/docs/hashes.html

Hash sets
The sᴇᴛs module provides the generic HashSet[T] data type and the related procedures and func
tions. HashSets behave similarly to Nim’s built-in set type, but while the base types of the built-in
set type are restricted to ordinal data types of 8 or 16-bit size, there is no such restriction for Hash
Sets. That is, HashSets can be used like hash Tables for most of Nim’s data types, including user-
defined types like objects. From the implementation, HashSets are very similar to hash
Tables — while a hash Table uses a key entity to access a value instance, HashSets uses only the key,
e.g. to test if the key is contained in the set. A typical use of HashSets is to test if a string is contained
in a collection of strings:

import std/sets

var s: HashSet[string] = toHashSet(["var", "type", "const", "while"])

var v = stdin.readLine

if v in s:
 echo v, " is a Nim keyword"

The functions and procedures provided by the sᴇᴛs module are used similarly to those of the ᴛᴀʙʟᴇs
module — we have excl() and incl() to remove or add elements to a set instance, and operations to
create the union, intersection, or difference of two HashSets. As the basic behavior of HashSets is so
similar to hash Tables, we will not try to explain the available functions — whenever you may have
a concrete use case for Nim’s HashSets, you can consult the module documentation. Remember that,
as with hash Tables, for data types used as keys, a hash() function and the == operator must have
been defined.

A more interesting point concerns when you should use Nim’s built-in set type and when to use the
HashSet. Well, Nim’s built-in set type is restricted to ordinal types of 8 or 16-bit size as the base type,
that is byte, int8, uint8, bool, char, enum, int16, and uint16. For other base types, we have to use the
HashSet. So, why do we not always use HashSets only? The reason is that the implementation is dif
ferent. The built-in set type is internally a bit vector. To store a set with an 8-bit base type, 256 bits
are needed, that is 10 bytes. For this data type, operations like union, intersection, or difference
map well to basic CPU instructions like bitor and bitand and are very efficient. The same is true for
the incl() and excl() operations, which map well to fast CPU instructions. So, whenever we can use
the built-in set type with an 8-bit base type, we should use that and not a HashSet. For a 16-bit base
type, the set already requires 8192 bytes — for a union, intersection, or difference, all these bytes
have to be combined in some way. The incl() and excl() operations should be still really fast — a few
math operations (div 8) give the byte location, and then a CPU instruction tests if a bit is set or sets a
bit. So the built-in set type should work still fine with a 16-bit base type, and for densely populated
sets the built-in type should be the best option in most cases. Here, densely populated means, that
most of the provided bits are really needed and used. For sparsely populated sets, the situation is
different. Imagine you have a few numbers, all smaller than int16.high+1, but some larger than
int8.high. For this use case, a HashSet[int16] should consume less storage and may offer compara
ble performance. Just test it yourself!

282

Operating system services
The os module supports basic interactions with the operating system, such as accessing the file sys
tem, reading command-line arguments, executing shell commands and external processes, or
retrieving environment variables. The abstractions of the os module allow us to write programs
that may interact with the OS but still can be compiled and run unchanged on various operating
systems including Windows, macOS, and Linux.

This module is quite large, and it would make no sense to introduce much of its content here. When
you have the feeling that you may need some functionality that is related to OS services, you just
should consult the API documentation of the os module.

We have already used some functions of the os module in an earlier section of the book, for exam
ple, the paramCount() and paramStr() functions to process command-line arguments, and the file
Exists() and getFileSize() functions to test if a file already exists, and to get the file size in bytes.
Whenever we intend to access the file system, we have to take into account the fact that the three
major operating systems use different separator characters for file paths and different paths for
folders like the user’s home directory. Functions such as getHomeDir() or getAppDir() make it easier
to navigate in the file system structure, and functions such as joinPath() or addFileExt() help us to
construct file or folder names:

import std/os
const FileName = "data"
const FileExt = "txt"
var path = getAppDir()
path = joinPath(path, FileName)
path = addFileExt(path, FileExt)
echo path
if fileExists(path):
 echo "File: ", path, " already exist."
else:
 path.writeFile("Testing the os module.\n")

The iterator envPairs() can be used to list all the environment variables, and getEnv() can be used
to get the value of a specific variable.

import std/os

for k, v in envPairs():
 echo k, ": ", v

echo getEnv("USERNAME")

Or we may use the walkDir() iterator to iterate over the content of a folder:

import std/os

283

for k, p in walkDir(getAppDir()):
 echo k, ": ", p

WalkDir() returns a tuple — the PathComponent enumeration like pcFile or pcDir, which gives us the
type of the directory entry, and the path as a string.

The function execProcess() to run a shell command is provided by the osᴘʀoᴄ module:

import std/osproc

when defined(windows):
 # var output = execProcess("cmd.exe /c ipconfig")
 var output = execProcess("cmd.exe /c ipconfig" , options={poUsePath,
poStdErrToStdOut, poEvalCommand, poDaemon})
else:
 var output = execProcess("ifconfig")
 echo output

Here we used when defined(windows): to test if the code has been compiled for Windows or for
Linux/macOS so that we can use the correct command string. For Windows, flashing the console
window could still be an issue; see https://forum.nim-lang.org/t/7320#46431.

Other functions of the os module that can sometimes be useful are sleep() to delay the program exe
cution for a time period specified in milliseconds, and parseCmdLine(), which splits the command
line argument string into several components. But in the next section, we will present the ᴘᴀʀsᴇoᴘᴛ
module, which is an advanced command-line parser, and in Part V of the book, we will present the
external cligen package, which is even more powerful.

284

https://forum.nim-lang.org/t/7320#46431

Command-line parsing
For Linux users, it is not uncommon to use a terminal window or shell to launch programs by typing
in textual commands, instead of clicking on icons or pictograms. In the introductory sections of the
book, we mentioned that one way to launch the Nim compiler is to type a command like nim c
--mm:arc test1.nim in a terminal window.

Pure Windows users, who never use terminal windows to interact with the computer, may skip this
section. For the others, we will give a short introduction to the structure of command-line argu
ments, and how we can process them with the ᴘᴀʀsᴇoᴘᴛ module of Nim’s standard library.

Working from within a terminal window can have some benefits in some scenarios, and some sim
ple tools may have no graphical user interface at all, so you can only use them from the terminal.
From within a terminal window, we can type in command names like ls or df, and press the return
key to just execute a program with that name. Or we can pass additional options and arguments to
these programs, e.g. the command ls -l /tmp would list the directory entries of the /tmp folder dis
played as one entry per line. Here ls is the command or program name, -l is an option, indicating
that we desire an output format with only one entry per line; and /tmp is the actual argument,
which is the /tmp folder. Don’t get confused by the slash character in front of the tmp directory
name — the slash has no special relevance for the argument parsing, it is just that on Linux systems
/ is the name of the uppermost level of the file system, called the file system root, so /tmp is the
folder named tmp at the file system root.

We said, that in the ls command above, -l was an option. That option indicates for the ls com
mand, that we want the output with only one entry per line. For the ls command, some other
options can be specified in a short and in a long form: The notations -s and --size can both be used
to tell ls to print the file size. Short options are always introduced by a single minus character, and
each following single character then stands for a distinct option, e.g. -lt asks for a single entry per
line output, which included the modification time for the entry. For the long options, which start
with two minus signs, only a single option name like "size" can be specified.

In addition to these plain short and long options, options with values also exist. The values are sepa
rated from the option name with a colon or an equal sign. Imagine that we have a command called
"fancyPrint", which can print out text documents, and allows us to specify single pages to print
instead of the whole document. That could be done with the short and long options p and page, each
requiring a numeric value like fancyPrint -p:17 mydoc.pdf or fancyPrint --page:17 mydoc.pdf.

In principle, it is possible to mix short and long options with and without values and arguments
freely, which can make the evaluation of command-line strings difficult. Usually, options have to be
specified in front of arguments, but some programs relax this, e.g., ls /tmp -l also works. And some
(older) programs recognize options without a leading minus sign, e.g. tar cf hhh.tar hhh/ specifies,
that the archiving tool should create (c) a file (f) named hhh.tar with the content of folder hhh. Here
the single letter c without a leading minus sign is interpreted as some form of a command, c stands
for create. Similarly, the Nim compiler interprets the first single letter as a command — c for com
piling with the C backend.

After this short introduction to command-line options, we will investigate how we can use Nim’s
ᴘᴀʀsᴇoᴘᴛ module to process the command-line string and extract the various options and parame

285

ters.

Let us start with this simple example:

import std/parseopt

var p = initOptParser()
while true:
 p.next
 case p.kind
 of cmdEnd:
 break
 of cmdLongOption:
 echo p.key, ": ", p.val
 of cmdShortOption:
 echo p.key, ": ", p.val
 of cmdArgument:
 echo "Arg: ", p.key, p.val

When you compile and run this code in a terminal window, you can pass various combinations of
short and long options, with and without values, and one or more arguments like file names. This
call

./t -a=3 --verbose h.txt

would generate this output:

a: 3
verbose:
Arg: h.txt

The first option with key a has value 3, verbose is a long option without a value, and h.txt is recog
nized as an argument, which can be a file name in this case.

Our program starts with a call to initOptParser(), which returns an OptParser object. We call ini
tOptParser() without any parameter — in this case, the function constructs the command line string
itself by a series of commandStr() calls of the os module. In the while true: loop, we call p.next to
get the next option. Then we can access the kind field, which is an enumeration type with the possi
ble values cmdEnd, cmdShortOption, cmdLongOption, or cmdArgument. This kind field indicates the type of
the current option, and the key and val fields of the OptParser instance provide the actual option
name and value when available.

Instead of this explicit while loop, we can also use the getopt() iterator:

import std/parseopt

var p = initOptParser()

286

for kind, key, val in getopt(p):
 case kind
 of cmdEnd:
 assert false # break
 of cmdLongOption:
 echo key, ": ", val
 of cmdShortOption:
 echo key, ": ", val
 of cmdArgument:
 echo "Arg: ", key, val

When we use this iterator, we do not actually get the kind value of cmdEnd, but we still need that
case label or an else: discard branch of the case statement to cover all possible cases, otherwise
the code would not compile.

In addition, the ᴘᴀʀsᴇoᴘᴛ module supports passing option values without the need to separate the
option name and the option value with a : or a =, e.g. a command line like -a3. To make that work,
we have to tell the parser which options have values and which do not:

import std/parseopt

var p = initOptParser(shortNoVal = {'h', 'v'}, longNoVal = @["help", "verbose"])
for kind, key, val in getopt(p):
 case kind
 of cmdEnd:
 assert false
 of cmdLongOption:
 echo key, ": ", val
 of cmdShortOption:
 echo key, ": ", val
 of cmdArgument:
 echo "Arg: ", key, val

Now we can call our program like

./t -p13 --quality low --verbose report.pdf

and get this output:

p: 13
quality: low
verbose:
Arg: report.pdf

We specified for initOptParser(), that the short options h, v, and the long options help, verbose have
no values but work just like a plain switch. These specifications tell that function, on the other

287

hand, that all other options do use values, so the numeric value 13 after the p options is recognized
as value, as well as the low value that follows after quality. As the verbose option has no value,
report.pdf is recognized as an argument.

You may still wonder if the ᴘᴀʀsᴇoᴘᴛ module supports commands, as used in nim c --mm:arc
mycode.nim? Yes, this works, we would get this output:

./t c --mm:arc mycode.nim
Arg: c
gc: arc
Arg: mycode.nim

The command c is recognized as an argument, and in our program, we would have to detect that an
argument called just "c" is a command name and not a file name. To avoid ambiguity, we may have
to care not only for the value of arguments, but also for its position in the command string, maybe
by the use of an additional position counter, or maybe we call paramStr(1) to get the first parameter
directly.

Note that all the option values are strings. You have to validate these strings yourself, and you may
need to convert them to integers or other data types when required.

At the end of this section, we will sketch how an actual program might use the ᴘᴀʀsᴇoᴘᴛ module. We
assume that we want to create a tool capable of printing a single PDF file, either its complete con
tent or just a specified page, with selectable print quality. So the base structure of our program may
look like

import std/parseopt

proc print =

 var
 pages = "all" # default values
 quality = "medium"
 verbose = false
 filename = ""
 argcount = 0

 var p = initOptParser(shortNoVal = {'h', 'v'}, longNoVal = @["help", "verbose"])
 for kind, key, val in getopt(p):
 case kind
 of cmdLongOption:
 case key
 of "help":
 echo "This tool"
 quit(0)
 of "verbose":
 verbose = true
 of "pages":
 pages = val

288

 of "quality":
 quality = val
 else:
 echo "Invalid long option:", key, " with value ", val
 of cmdShortOption:
 echo key, ": ", val
 of cmdArgument:
 inc(argcount)
 if argcount > 1:
 echo "Too many arguments"
 quit(1)
 filename = key
 else:
 discard

 if argcount == 0:
 echo "missing filename"
 quit(0)
 echo "Printing file: ", filename
 echo "pages: ", pages
 echo "quality:", quality
 echo "verbose mode: ", verbose

print()

In this example, we left out the interpretation for the short options, which should be processed sim
ilarly to the long ones. You can see, that the actual use of the ᴘᴀʀsᴇoᴘᴛ module still requires a lot of
code for validation and interpretation of options and arguments. In Part V of the book, we will
present the external Cligen package, which further simplifies the command line parsing.

289

Regular expressions
A regular expression, shortened as regex or regexp, is a sequence of characters that specifies a
search pattern, which is used to find or replace parts of a string or of a whole text document, or
just to validate it. It is a technique developed in theoretical computer science and formal language
theory, introduced in the 1950s when the American mathematician Stephen Cole Kleene formalized
the description of a regular language. The use of regular expressions became popular with Unix
text-processing utilities like sed, grep, and awk, were used in early text editors like vi and emacs for
pattern matching, and are commonly used in modern text editors and word processing programs in
find and find and replace dialogs. Different syntaxes for writing regular expressions have existed
since the 1980s, one being the POSIX standard, and another, widely used, being the Perl syntax.

To demonstrate a first simple example of the usefulness of regular expressions, we will start with a
sed call that can be used to replace all snake case symbols in a text file with camel case, e.g. convert
the symbolic name line_width into lineWidth:

sed -i -E 's/_([a-z])/\U\1/g' myfile.txt

Here the option -E tells the sed program to use the extended regular expressions, rather than basic
regular expressions, and option -i specifies to work in place, instead of just printing the modified
text in the terminal window. The pattern s/a/b tells it to substitute pattern a by expression b, and
the final /g stands for global and tells sed to do substitutions in the whole file. The actual interesting
part is the search pattern _[a-z], which specifies the actual underscore character followed by a sin
gle lowercase letter. Whenever such a pattern is found, it is replaced with a capitalized version of
the found letter. The /U tells sed to convert to upper case, and \1 refers to the captured text segment.
You may still wonder why [a-z] is enclosed in braces — well matches enclosed in braces are actu
ally captured, so we can refer to the captured letter later, in this case, we refer to the first captured
match with /1 and apply /U on it to convert it to upper case.

As you see, regular expressions are useful but difficult to understand and remember.

Some programming languages, like Perl or Ruby, have built-in support for regular expressions and
others use external libraries. For interpreted languages like Perl, Python, or Ruby, it makes a lot of
sense to use regular expressions for parsing strings, as the regex engines of these languages are
generally written in C language, which leads to the fact that even for very basic string operations
like splitting strings into single tokens or doing simple character replacements, the use of regexes
can be faster than performing the same operations with multiple statements in the interpreted pro
gram code. For compiled languages like Nim, the situation is very different — using regexes is fast,
but doing simple things directly in the compiled languages is still much faster. And Nim provides
many other libraries like strscans, or parseutils, which can do even advanced string operations
much faster than by use of regular expressions.

So actually, the use of regular expressions in Nim is very limited, in most cases, there exist other,
simpler, and faster solutions. As learning the use of regexes is not that easy, and it is hard to
remember all the details, we may hesitate to try it at all. But actually, for text processing tools like
sed and grep, and for use in text editors and word processors, regexes are very useful, so it makes
some sense to learn at least the basic use of regular expressions. And when we learn to use regexes

290

at all, then we can use them in Nim as well.

Each character in a regular expression (that is, each character in the string describing its pattern)
is either a metacharacter,[1] having a special meaning, or a regular character that has a literal mean
ing. For example, in the regex b., b is a literal character that matches just 'b', while . is a metachar
acter, that matches every character except a newline. Therefore, this regex matches, for example,
b%, or bx, or b5. Together, metacharacters and literal characters can be used to identify the text of a
given pattern or process a number of instances of it. Pattern matches may vary from a precise
equality to a very general similarity, as controlled by the metacharacters. For example, . is a very
general pattern, [a-z] (match all lower case letters from 'a' to 'z') is less general and b is a precise
pattern (matches just 'b'). The metacharacter syntax is designed specifically to represent prescribed
targets in a concise and flexible way to direct the automation of text processing of a variety of input
data, in a form easy to type using a standard ASCII keyboard.[2]

In this section, we will not try to explain all the details of the syntax and semantics of regular
expressions, but only show you how the ʀᴇɢᴇx module is used in principle, and give a few examples
of its use. For details, you should consult the API documentation of the ʀᴇɢᴇx module, and for con
crete use cases, you may additionally consult the Wikipedia article and various internet resources.

The Nim standard library provides two modules for the use of regular expressions, called ʀᴇ and
ɴʀᴇ, which are both wrappers for the PCRE (Perl Compatible Regular Expressions) C library. Addi
tionally, a module called ʀᴇɢᴇx is available as an external package, which is fully written in Nim
language. These three modules are similar, but their API is different. When you intend to use re and
nre, you have to ensure that the PCRE C library is also installed on your computer. As the external
ʀᴇɢᴇx module is written in pure Nim and is of high quality, we will actually use that one for our
examples — actually, if using one of the other two, it would not be easy to decide which to use. You
may wonder why we present the ʀᴇɢᴇx module already here, as it is not part of the Nim standard
library? Well, a regex library is an important part of each programming language, and re and nre
are actually included in Nim’s standard library. Due to Nim’s package managers like nimble, using
external packages is very easy, we just have to execute

nimble install regex

We will start to demonstrate the use of the ʀᴇɢᴇx module with a very simple example:

import regex

let r: Regex = re"\w\d"
let t1: string = "a1"
let t2 = "nim"
var m: RegexMatch
if match(t1, r, m):
 echo "match t1"

if match(t2, r, m):
 echo "match t2"

291

We use the re() function with the search pattern as an argument to generate an instance of a Regex
variable. Then we can use the match() function to match a textual string against this regex. The last
argument of the match function is a variable of RegexMatch type, which captures the matched terms
so that we can use them later.

In our pattern "\w\d", the \w stands for a word character that includes upper and lower case ASCII
letters, and the \d stands for a decimal digit. So the string t1 matches that pattern, but the string t2
does not, as there is no decimal digit following the first letter. In the example from above, we actu
ally check only if a string matches the pattern, but we do not capture the matches. So, we do not
need the RegexMatch variable m at all, and we could call the match() function without that parame
ter. To actually capture a match, we would have to enclose the subpattern in braces like "\w(\d)" to
capture the digit in case of a successful match.

As the next simple example, let us match a string starting with the capital letter A, followed by an
arbitrary number of letters, followed by an integer number. We want to capture the integer in case
of a match:

import regex

let r: Regex = re"A[a-z, A-Z]*(\d+)"
let t1: string = "Alex77"
let t2 = "nim"
var m: RegexMatch
if match(t1, r, m):
 echo "captured: ", m.group(0, t1)

if match(t2, r, m):
 echo "captured: ", m.group(0, t2)

To understand the regex pattern, we need to know that we can use * to specify an arbitrary number
of repetitions and + to specify one or more repetitions. The initial A is not a metacharacter and
stands for the literal A. The content of the square brackets specifies a character class, a-z specifies
the range of lower case letters, A-Z the range of upper case letters, and the following * indicates an
arbitrary number of repetitions. Finally, the \d stands for a decimal digit, and + specifies one or
more repetitions. As we enclosed the last subpattern in braces, that group is captured. For a suc
cessful match, we can access the capture with the group() function, where we have to specify the
index number of the capture, and the actual text string that was used for the match. The fact that
we have to specify the initial text may indeed seem a bit strange. For string t1, we get a successful
capture with the result @["77"]. So our actual captured string is contained in a seq, which is useful
when multiple (nested) strings are captured. In the code from above, we could have used group
FirstCapture() instead to get directly the first captured string.

Greedy matching
Whenever we create regex patterns, we need to consider whether sub-matches should be greedy or
not. In most cases, greedy is the default, and we have to take some care when we need non-greedy
behavior. Greedy means just, that the regex engine captures as many characters as possible, while
non-greedy capturing stops the capturing process early. Indeed, these greedy/non-greedy capturing

292

can be one of the most demanding tasks when we create larger and more complicated patterns.
Imagine that for our above example, we would have used the pattern re"A\w*(\d+)". For the same
string, "Alex77", we would then get the output @["7"]. The reason for that is, that \w* does greedy
processing, eating all but the last decimal digit, which it left to satisfy /d+. From the API documenta
tion of the ʀᴇɢᴇx module, we learn that we can specify \w*? instead to get non-greedy processing, so
both digits are left for \d+, and we get again @["77"] as output.

Escape sequences
The use of escape sequences in regex patterns is another difficulty for beginners. The first problem
can be, that the Nim compiler may process the escape sequences already itself, while we intend to
leave them for the regex engine. We can avoid that when we use Nim’s raw strings, e.g. we can use
triple quotes when we construct the pattern from individual strings, as done in our next example.
In a regex, we can use escape sequences to specify special literal characters; for example, we may
use \t for a literal tabulator. And finally, we may have to escape some punctuation characters like *,
+ or ?, that have a special meaning for the regex engine when we intend to use that character as an
ordinary literal. For example, to match a letter followed by a question mark, we have to use a pat
tern like "[a-z]\?" or "[a-z][?]". Inside a square bracket, we can use the punctuation characters
without the need to escape them.

As the next example, let us assume that we have to process a text file in which all lines start with a
name consisting of lowercase letters, followed by three decimal numbers. The name and the three
numbers can be separated by spaces, or by commas or semicolons:

import regex

let h = """\s*[,;]?\s*(\d+)"""
let r: Regex = re("[a-z]+" & h & h & h)
let t1: string = "nim 12;8 , 17"

var m: RegexMatch
if match(t1, r, m):
 echo "captured: ", m.group(0, t1), " ", m.group(1, t1), m.group(2, t1)

To understand the pattern that we use in the above code, we have to know that we can use \s for a
white-space character, so \s matches a single space or a tabular character. We could have used just
a space literal instead, or the [] character class containing just a single space. And we have to know
that we can use ? to specify an optional entity. We have split the total pattern into two parts, where
the variable called h stands for the sequence of any number of white space, followed optionally by a
single comma, or a single semicolon, followed again by any amount of white space, that is finally
followed by at least one decimal digit. As we want to capture the decimal numbers, the sequence of
decimal digits is enclosed in round brackets. The total regex pattern is constructed by the subex
pression [a-z]+ for at least one letter, followed three times by the integer pattern with the allowed
separators. Note that we allow any amount of spaces or tabulators, but only a single comma or
semicolon between the different entities. Also note that the match() function of the ʀᴇɢᴇx module
always does a full match, so a single space at the beginning or end of the text string would make
the match fail. We could compensate for that by starting and ending the regex pattern with "\s*". Or

293

we could use instead of match() the find() function, which searches through the string looking for
the first location where there is a match. When we use find(), we may use the special characters ^
and $ to match the start or end of the string, that is, with find() and re"\s+$", we could find all the
strings, which have trailing white-space. Note that find(text, re"^regex$", m) is the equivalent to the
match() function.

The ʀᴇɢᴇx module also provides us with two replace() functions, which we can use to replace
matched patterns with literal strings, or captured and modified strings. The first replace() function
uses as a third argument a string, which is used for replacements and in which we can refer to cap
tured groups with the symbols $N, where N is the index of the captured group starting at one. The
second replace() function uses a function as the third argument. This function gets an instance of
the RegexMatch type as the first parameter and returns the string replacement. We will use both
variants of the replace() function to create a tiny app that we can use to fix typos in program and
text files: Text files can contain typing errors, which include two or more spaces between adjacent
words, unneeded trailing white space at the end of lines, and the use of a instead of an in front of
words starting with a vocal. Program source code may also use snake case for names instead of
camelCase, e.g., line_counter instead of lineCounter. We will create a tool that can fix these four
issues, ignoring the fact that an actual a/an replacement might corrupt the program’s source code.
To demonstrate the four issues, we have created this small test file — line three contains two
unneeded spaces, and the last line has some unwanted trailing white space:

this is a example
var line_width: int

echo line_width

We will fix these four issues independently of each other, so we will try to find a regex that matches
each issue and then use the replace() function to fix it.

import regex, std/strutils
let fileName = "test.nim"
let trail = re"\s+$"
let aan = re"a(\s+[AEIOUaeiou])"
let space = re"(\S\s)\s+(\S)"
let snake = re"_([a-z])"

proc toUpper(m: RegexMatch, s: string): string =
 when defined(debugThis):
 echo "a: ", s
 echo "b: ", m.group(0)
 echo "c: ", m.group(0)[0]
 echo "d: ", s[m.group(0)[0]]
 echo "e: ", strutils.toUpperAscii(s[m.group(0)[0]])
 return strutils.toUpperAscii(s[m.group(0)[0]])

for l in filename.lines:
 var h = l.replace(trail, "")
 h = h.replace(aan, "an$1") # caution, this is for text files!

294

 h = h.replace(space, "$1$2")
 h = h.replace(snake, toUpper)
 echo h

We process our file with the issues line by line, using the lines() iterator, to which we pass a file
name and which gives us the individual lines of the file. We will start with the simplest task, which
is removing trailing white space. The search pattern for this issue is obviously "\s+$", which
matches at least one whitespace character at the end of a line; we need to replace this with an
empty string. So we pass this regex pattern called trail and an empty string literal to the replace()
function. Replacing a by an is also easy — we search for an a followed by white space and a vocal,
for which the regex pattern is the aan variable in the above code. In this case, we have to preserve
the actual white space and the vocal, so we enclose these in brackets to capture it. The replacing
string is "an$1", where $1 stands for the captured white space and the captured vocal. Replacing too
much inter-word space is a bit more difficult. The actual issue is one whitespace followed by one or
more white-space, for which a possible match pattern is "\s\s+". But actually, we do not want to
remove all white space consisting of more than one character, but only white space between words.
So multiple white-space at the beginning of a line should be preserved. One solution is, that we use
the metacharacter \S, which matches all non-whitespace characters, and then use this search pat
tern: "(\S\s)\s+(\S)". The pattern starts with a non-whitespace character, followed by a white
space, then at least one more whitespace character, and finally a non-whitespace character. We
capture the two first characters, and the last one. This way, we can replace the whole match with
the two captures, and we are done. Finally, we have to replace underscore characters followed by a
lowercase letter with a capitalized letter. Some tools like sed provide the \U to capitalize a capture,
but this is not available for the ʀᴇɢᴇx module. So we use the replace() variant, which uses a proce
dure as the last parameter — to that proc the capture and the original string is passed, and that
function should return the replacement string. The capture which we have to use to catch a snake
element is obvious, just "_([a-z])". We call the converter proc toUpper(), its parameters, and its
return type is specified by the regex API docs. But unfortunately, the actual structure of the passed
RegexMatch instance is not that detailed described. So, we created some conditional echo() state
ments inside the body of our toUpper() procedure to examine the structure of the parameters.
When we compile our program with the -d:debugThis option, and run it, we get this output:

nim c -d:debugThis t.nim

$./t test.nim
this is an example
a: var line_width: int
b: @[9 .. 9]
c: 9 .. 9
d: w
e: W
var lineWidth: int

a: echo line_width
b: @[10 .. 10]
c: 10 .. 10
d: w
e: W

295

echo lineWidth

So the last string parameter is always the whole string that was passed as the first argument to
replace(), and m.group(0) is a sequence of slices for the first capture. We need only the first element
of this seq, as we have only one capture, and we use that slice to extract the captured sub-string by
use of s[m.group(0)[0]]. Finally, we apply strutils.toUpperAscii() on this sub-string to capitalize it
and return that result.

When you run the above program, you should get a text file with all issues fixed. You may redirect
the output to a file with "\.t test.nim > newtest.nim" and load newtest.nim into an editor to prove
that the trailing white space is removed as well.

Final remarks
The use of regular expressions is not that easy and makes in most cases not much sense in Nim. Per
haps the largest problem with regular expressions is, that it is hard to understand patterns that we
created some years ago, or that have been created by other people. And it is difficult to modify
those patterns later. Maybe you should play a bit with regexes yourself now, and come back to this
topic when you think that you need them. In this book, we were only able to provide a brief intro
duction to the subject — you will have to carefully study the API docs of the ʀᴇɢᴇx module and a lot
of other resources on the Internet should you seriously intend to use them. We should also men
tion, that while regexes are very powerful, for some tasks they do work not that well, e.g. parsing
math expressions with nested braces, or just skipping nested comments in some source code, which
can be very difficult or even impossible.

References:

• https://en.wikipedia.org/wiki/Regular_expression

• https://en.wikipedia.org/wiki/Perl_Compatible_Regular_Expressions

• https://www.regular-expressions.info/pcre.html

• https://nitely.github.io/nim-regex/regex.html

[1] https://en.wikipedia.org/wiki/Metacharacter

[2] https://en.wikipedia.org/wiki/Regular_expression

296

https://en.wikipedia.org/wiki/Regular_expression
https://en.wikipedia.org/wiki/Perl_Compatible_Regular_Expressions
https://www.regular-expressions.info/pcre.html
https://nitely.github.io/nim-regex/regex.html
https://en.wikipedia.org/wiki/Metacharacter
https://en.wikipedia.org/wiki/Regular_expression

Part IV: Some Programming Tasks
In this section, we will present a few simple programming exercises.

297

Permutations
A collection of n distinguishable elements can be grouped in n! (factorial) distinct arrangements.
(We can select an arbitrary element from the collection and place it in any of the n possible posi
tions. Then, we choose the next element and can select from the remaining (n-1) unoccupied posi
tions, and so forth.) For the three letters A, B, and C, this gives these 6 possible permutations:

'A', 'B', 'C'
'A', 'C', 'B'
'B', 'A', 'C'
'B', 'C', 'A'
'C', 'A', 'B'
'C', 'B', 'A'

A simple strategy to create all the possible permutations is the Steinhaus–Johnson–Trotter algo
rithm: We assume that we know already all the possible permutations of n - 1 elements. Then we
can just insert the next new element at all possible positions. As an example, let us create all possi
ble permutations of the numbers 1, 2, and 3. Obviously, the set of numbers 1 and 2 allows only the
arrangements 12 and 21. For both of them, we can add the next item at the beginning, in the mid
dle, and at the end, resulting in

312
132
123
321
231
213

For practical purposes, this method may not be very useful, as its simplicity comes from storing all
the permutations, thereby allowing us to easily add new elements at all possible positions. The algo
rithm can be used without storing all arrangements, but then it is not that simple. Another very
simple algorithm to generate all possible permutations is Heap’s algorithm, which exchanges only
two elements in a clever order to generate the next permutation. You can find detailed explanations
of these two and many more algorithms for the generation of permutations on the Internet and in
textbooks.

The Steinhaus–Johnson–Trotter algorithm and Heap’s algorithm generate the permutations without
following a special order. But often we have a set of orderable items, like numbers, characters, or
strings. And in this case, we may want to create the permutation in ascending or descending lexico
graphic order. The linked Wikipedia article describes in the informal textual form how we may cre
ate the next ordered permutation from an existing one:

1. Find the largest index k such that a[k] < a[k + 1]. If no such index exists, the permutation is the
last permutation.

2. Find the largest index l greater than k such that a[k] < a[l].

3. Swap the value of a[k] with that of a[l].

298

4. Reverse the sequence from a[k + 1] up to and including the final element a[n].

This description is enough to create a Nim procedure for this purpose, but let us first try to really
understand why this algorithm actually works. We will investigate the strategy using the four deci
mal digits: 1, 2, 3, and 4. Our task, starting with an arbitrary existing order, is to find the next per
mutation of these digits that represents the next larger number. We start by investigating the exist
ing digits from the right, that is with increasing power of decimal places. Remember that the value
of a decimal number like 56 is 5 * 10^1 + 6 * 10^0. When we regard the decimals starting from the
right, then we move to the left, until we detect a digit that is smaller than the right neighbor. We call
this position k. When we have found such a position k, then we select the rightmost digit that is
larger than the digit at position k, and we swap the two digits. The result is a larger number, and we
are nearly done. But actually, this is not yet the smallest possible larger number. We have still to
sort all the digits at positions greater than k in ascending order. Note, that sorting a group of digits
in ascending order gives the smallest numerical value. In actuality, sorting is not really necessary;
simply reversing that sub-range suffices. The reason for this is, that we know, that all the digits
right to position k are in descending order, so reversing them gives us the desired ascending order.
Let’s investigate the starting value 4231 as an example. The leftmost digit, at position 0, has a value
of 4, and the rightmost digit, at position 3, has a value of 1. Starting from the right, we discover that
digit 2 at position k == 1 is the first that is smaller than the right neighbor. Starting again at the
right, we find that digit 3 at position 2 is the rightmost one that has a value greater than the digit at
position k. So we exchange the digits at positions k == 1 and position 2 and get the number 4321.
Sorting or reversing the positions k + 1 and k + 2 gives us the final result of 4312.

Creating a Nim procedure from our informal description is an interesting, not-too-difficult task,
which teaches us some details about the construction of loops used to iterate over containers.
Below is one possible solution, which we will discuss in the next paragraph:

proc nextPermutation*[T](a: var openArray[T]): bool =
 var k = a.high - 1
 while k >= 0 and a[k] >= a[k + 1]:
 dec(k)
 if k >= 0:
 var l = a.high
 while a[k] >= a[l]:
 dec(l)
 swap(a[k], a[l])
 a.reverse(k + 1, a.high)
 return true

We created a generic procedure with the name nextPermutation() and a single argument a of type
openArray[T]. We made the proc generic to allow us to use it with all orderable base types – that is,
with types for which the < operator is defined, like various numeric types, as well as enumeration
types, characters, or strings. We use the parameter type openArray[T], which allows us to pass
arrays, strings, and sequences. The procedure has a boolean result type, which indicates if creating
a permutation with a larger value is possible. For the number 4321, this is not the case, as that is
already the permutation with the largest numeric value. Our procedure starts by investigating dig
its at positions k and k + 1, starting at the rightmost position a.high. As we are looking for the condi
tion a[k] < a[k+1], we execute the while loop as long as the condition not (a[k] < a[k+1]) is true,

299

which is identical to a[k] >= a[k + 1]. Additionally, we have to ensure that k is always greater or
equal to zero, otherwise, we would access an invalid array position. If this loop is terminated by the
condition k < 0, then no larger permutation is possible, and the procedure would return the default
result false. Otherwise, we use the second while loop, again starting at the right at position a.high,
to find a position l with a digit that is larger than the digit at position k. Note that such a position
always exists. Finally, we swap the digits at positions k and l and reverse the array positions k + 1
up to a.high. For the reversal, we use the reverse() procedure from Nim’s standard library’s ᴀʟɢo
ʀɪᴛʜᴍ module. Of course, accomplishing this reversal with a plain while or for loop is also possible
– you may try that as a small exercise. Indeed, using a custom loop for reversal might slightly
enhance the performance, as invoking reverse() could incur a small overhead. But in most cases,
the actual creation of the permutations is not a critical operation, as we typically use the generated
values for something, and that may take much longer.

As an exercise, you may create a proc with signature prevPermutation*[T](a: var openArray[T]):
bool that creates the permutations in descending order so that calling first nextPermutation() and
then prevPermutation() cancel each other. That procedure will look quite similar to our example.
You may start with a number like our value 4312 and investigate how you can find the next smaller
permutation, which should be our 4231 from above.

▼ Click to see a possible solution

proc prevPermutation*[T](a: var openArray[T]): bool =
 var k = a.high - 1
 while k >= 0 and a[k] <= a[k + 1]:
 dec(k)
 if k >= 0:
 var l = a.high
 while a[k] <= a[l]:
 dec(l)
 swap(a[k], a[l])
 a.reverse(k + 1, a.high)
 return true

We can use our functions directly, or we can use them to create an iterator like

iterator orderedPermutation*[T](input: openArray[T]): seq[T] =
 var a = input.sorted
 while true:
 yield a
 if not nextPermutation(a):
 break

That iterator starts by sorting the input argument to get the smallest arrangement and yields that
value and all the available permutations. Note that a very similar nextPermutation() proc is avail
able in Nim’s ᴀʟɢoʀɪᴛʜᴍ standard library. And you may find the procs from above and some
related procedures and iterators in a Nim GitHub package called combinatorics at
https://github.com/StefanSalewski/combinatorics.

300

https://github.com/StefanSalewski/combinatorics

References:

• https://en.wikipedia.org/wiki/Permutation

301

https://en.wikipedia.org/wiki/Permutation

Combinations
In mathematics and computer science, combinations refer to the selection of items from a set with
out regard to the order in which they are arranged. The number of ways to choose r items from a
set of n items (with r <= n) without repetition and without order is denoted by (n over r) and is cal
culated using the formula n! / (r! * (n - r)!), where ! denotes the factorial operation.

Creating a proc or an iterator to generate all the combinations with r elements from a set of n ele
ments is an interesting task which can be solved by various strategies. In the previous section about
permutations we started with a formal description of an algorithm found at Wikipedia, tried to
understand it, and finally converted it to Nim code. Of course, we could do the same for creating
combinations: search for an algorithm description or code written in C or another popular lan
guage in text books or the Internet, and convert that to Nim. In this section, we will initially try
instead to solve the task without a template, as an exercise with medium difficulty. We will develop
recursive and iterative solutions, and finally compare them to solutions from Rosetta-Code.

We will start our investigation with a concrete example provided by the Wikipedia article
(https://en.wikipedia.org/wiki/Combination), which shows all the possible combinations of the five
digits from 1 to 5 when we select 3 digits each. The columns on the right display a mask built with
characters '_' and 'x' to indicate which digits are selected:

3-element subsets of a 5-element set

 12345
123 xxx__
124 xx_x_
125 xx__x
134 x_xx_
135 x_x_x
145 x__xx
234 _xxx_
235 _xx_x
245 _x_xx
345 __xxx

We have a set of n distinct numbers, and select sets of r elements from these. Each selection should
contain only unique elements without repetitions, and ordering of the elements should not matter.
Typically we try to generate the combinations in ascending order. Some algorithms for creating
combinations might work with all data types, while others may work only for numeric data, which
provides the + and < operators.

Before you continue reading this section, we suggest you think for a few minutes about the problem
and try to create at least one solution yourself. You could start with a procedure or iterator called
combinations() with three parameters: a seq or array with n distinct numbers, and an int parameter
called r which tells how many elements we should pick each. The iterator would yield a seq of ints,
with r elements, and a proc would return a seq containing all these sequences, or just print them.
To further simplify the task, you may start with constant n and r values, called N and R. As a simpli
fied case, you may create an algorithm, which uses always the first n natural numbers as input data,

302

https://en.wikipedia.org/wiki/Combination

instead of a container data type. Of course, the procedures or iterators may use additional parame
ters, for example for the recursion depth in case of a recursive proc, or the last created value.
Remember that Nim’s iterators do not support recursion, so when you start with a recursive func
tion, you would have to convert it into a non-recursive entity to be used as an iterator. To solve the
task, you may even use some of the procs from the preceding sections, but you should be able to do
without them. To create the algorithm, we might study the two columns of the above example: The
scheme shows the three selected digits on the left, and the mask structure is displayed on the right.
The order in which the printed numbers or the mask layout changes, gives us some hints how our
algorithm might process the input data.

Using mask permutations
We will start with a simple, but slow solution. The mask in the right column has n == 5 entries, with
three elements of value 'x' indicating a selected number, and 2 entries with value '_' denoting the
unselected numbers. When we use for the mask an array of five integers, with value 1 indicating a
selection and 0 an omission, we can create the ordered permutations of it and get a representation
of the desired mask. For each mask value, we can then select a set of 3 items from the n input values
and print or return it. So we have this first solution:

import combinatorics

iterator combinations[T](d: openArray[T]; r: int): seq[T] =
 var res: seq[T]
 assert(r in 0 .. d.len)
 var mask = newSeq[int](d.len)
 for i in 0 ..< r:
 mask[i] = 1
 for p in reversedPermutations(mask):
 res.setLen(0)
 for i, c in p:
 if c == 1:
 res.add(d[i])
 yield res

for t in combinations([1, 2, 3, 4 , 5], 3):
 echo t

As our combinations() iterator should return as first result a seq with the r leftmost elements, we
use a mask sequence that starts with r 1’s, and default zeros for the other positions. Then we use
the reversedPermutations() iterator from the ᴄoᴍʙɪɴᴀᴛoʀɪᴄs module of the previous section to per
mute the mask in descending order. For each iteration, we append an element from the input array
d to the res result variable when the mask contains a 1. The advantage of this solution is that the
iterator works for all kind of input data. However, it is slow, and we will present better solutions in
the next sections. Note that instead of the iterator reversedPermutations() we could have used
orderedPermutations(), if we had filled the mask with -1 values instead of 1. Also note that in our
first code listing we used the statement assert(r in 0 .. d.len) to ensure that the selection has a
valid size. In our further code examples, we will leave out this test for brevity. As the set size r has

303

to be always positive, we could have used the data type Natural instead of int, but that would still
require the test r <= d.len. Further, for orderable input data, we will assume that our procedure or
iterator is called with an input sorted in ascending order, so we can avoid an explicit call to sys
tem.sort().

Using recursion
When we study the generated sequence of numbers, we can see that the left column starts with six
elements each with value 1, following with three times value 2, and finally a 3. For each row, the
second and third element are combinations of all the other values. So an obvious strategy is to pick
one value and keep it, and generate the combinations for all the other possible values. This results
in a simple recursive procedure, with a few necessary conditions: Each combination has to be
ordered, and we need a stop condition when no more ordered combinations can be created. For the
first column in our example, that means that only values 1, 2, and 3 are allowed, because for a com
bination starting with value 4, the sequence would need values 5 and 6 to continue, but value 6 is
not contained in the input data. As Nim does not support recursive iterators, we can only create a
proc that returns a seq containing all the possible combinations, or we just print all the possible
combinations to the terminal window, as in the following code:

proc comb(d: openArray[int]; o: var openArray[int]; ip, op: int) =
 var ip = ip
 let r = o.len
 while ip < d.len:
 if r - op > d.len - ip:
 break
 o[op] = d[ip]
 inc(ip)
 if op + 1 == r:
 echo o
 else:
 comb(d, o, ip, op + 1)

proc combinations(d: openArray[int]; r: int) =
 var o = newSeq[int](r)
 comb(d, o, 0, 0)

combinations([1, 2, 3, 4, 5], 3)

In the while loop body, we use the assignment o[op] = d[ip] to copy an entry from the input data to
the output. The positions ip and op both start at index zero. While ip is explicitly increased in the
while loop body, op is increased by using increased arguments for the recursive proc call. The con
dition ip < d.len after the while keyword terminates the proc when all input elements have been
used, and the condition if op + 1 == r in the loop body prints all selected elements whenever the
index has reached the maximum value r. Otherwise, the proc recurs with the increased variable ip
and the value op + 1. The test r - op > d.len - ip in the loop is not really necessary, but without it
we have a few loop iterations, which cannot reach the value op + 1 == r and so would not generate
output.

304

First iterative solution
It is known that recursive functions can be transferred into iterative functions, when a stack vari
able is used to temporarily store further processing steps. This transformation is typically easy,
when the recursive call is at the end of a procedure, which is called tail recursion. For tail recursion,
often compilers can even do the conversion automatically. An example for tail recursion is the
recursive quicksort() function, which we will discuss in one of the following sections. For our above
recursive procedure, the conversion is not that easy, because the recursive call is embedded in the
while loop body.

In computer science, a stack data type is a container with a last-in first-out characteristic. A
stack data type supports typically a push() operations to add more elements, and a pop() oper
ation to remove the last added element. In Nim, we can use a seq with its add() and pop()
operations as a stack. Stacks are often used to delay operations — instead of processing data
immediately, we push them on the stack, and pop them later to continue processing. A similar
container, with a first-in, first-out characteristic, is called a queue or FIFO, and is used for
data buffers or wait queues. Computer programs typically use a segment of the RAM as a
stack storage automatically to temporarily store variables local to functions and procedures,
for passing parameters to functions, and to store CPU register content and the return address
when other functions are called. But in this section, we use the term stack for a data type that
we declare explicitly in our program.

Typically, for converting a recursive proc to an iterative form, we employ a stack variable, which
can store the proc parameters. We then push the initial parameters to the stack variable, and in a
loop we pop the topmost parameter from the stack, and push modified parameters onto the stack,
as long as we are not done. For the recursive procedure from above, we copy one element from the
input data to the output and immediately recur as long as the output position op + 1 == r is not
reached. This is some form of "depth first" recursion. A plain substitution of the recursive comb()
call with a stack.push() call to push the parameters onto the stack variable can not directly simulate
this behaviour. But we can use a trick: we push the arguments (ip, op + 1) from the recursive
comb() call onto the stack, and additional the values (op, ip) to continue the loop. By inverting the
order, the outer loop pops first the value (ip, op + 1) from the stack and proceeds with that tuple
in a depth first manner, and after that pops (ip, op) to continue. This leads to the code example
below:

iterator combinations0(d: openArray[int]; r: int): seq[int] =
 type El = object
 ip, op: int
 var stack: seq[El]
 var o = newSeq[int](r)
 stack.add(El(ip: 0, op: 0))
 while stack.len > 0:
 var el = stack.pop
 var op = el.op
 var ip = el.ip
 assert op == stack.len # in this case, we don't need the op field
 while ip < d.len:

305

 o[op] = d[ip]
 inc(ip)
 if op + 1 == r:
 yield o
 else:
 stack.add(El(ip: ip, op: op))
 stack.add(El(ip: ip, op: op + 1))
 break

for el in combinations0([1, 2, 3, 4, 5], 3):
 echo el

We have used a seq variable as a stack, as it supports the add() operation which is our actual push(),
and the pop() operation to remove the topmost element. As our recursive proc comb() used two
arguments called ip and op, our stack is built of an object data type with these fields. The iterator
starts with a seq storing only one element with fields ip == 0 and op == 0. The outer while loop
fetches an element from the stack until it is empty, and the inner loop processes all the elements of
the input data. When the maximum depth is reached, a result is yielded, otherwise the next data set
is stored onto the stack.

Simplified solution
The code above has the special property that the current stack length is always identical to the
value op stored in the topmost stack element. See the assert() statement in the code above. We can
use this condition to simplify the code. We have to store only the value ip on the stack, so we can
use a plain seq[int] as stack, and do not require the object type El. This results in the following
code:

iterator combinations[T](d: openArray[T]; r: int): seq[T] =
 var stack: seq[T]
 var o = newSeq[T](r)
 stack.add(0)
 while stack.len > 0:
 var ip = stack.pop
 var op = stack.len
 while ip < d.len:
 o[op] = d[ip]
 inc(ip)
 if op + 1 == r:
 yield o
 else:
 stack.add(ip)
 stack.add(ip)
 break

for el in combinations([1, 2, 3, 4, 5], 3):
 echo el

306

The two identical stack.add(ip) statements look a bit strange, but actually this is only a way to pass
two different values op encoded by the actual stack size. We will not further discuss this solution,
but present a similar, better algorithm soon.

Counting upwards
Our concrete data example starts with combinations '123', '124', '125'. This is some form of
upcounting, with overflow when at a position the maximum value of the input data is reached, and
the additional conditions that the output always has to be ordered without repetitions, so values
like '132' would be invalid. A possible solution for such an algorithm is the code below:

iterator combinations(i: openArray[int]; r: int): seq[int] =
 var o = newSeq[int](r + 1)
 o[0 ..< r] = i[0 ..< r]
 o[r] = i[^1] + 1
 dec(o[r - 1])
 while true:
 var i: int = r
 while i > 0:
 if o[i] - o[i - 1] > 1:
 inc(o[i - 1])
 break
 dec(i)
 if i < 1:
 break
 while i < r:
 o[i] = o[i - 1] + 1
 inc(i)
 yield o[0 .. (r - 1)]

for el in combinations([1, 2, 3, 4, 5], 3):
 echo el

We take the leftmost r elements from the input data, and append a dummy element. Then we start
from the right, trying to increase an element. After that, we still have to fix the elements on the
right, to ensure that the output is ordered and contains no repetitions. Our solution contains three
while loops, and has the disadvantage that it works only for numeric data. In the next two sections,
we will finally present two better textbook solutions, which we found at Rosetta Code.

Stack-based solution
The website https://rosettacode.org/wiki/Combinations has a nice stack-based algorithm provided as
C# example, which we can easily understand and translate into the Nim language:

idea based on c# example from https://rosettacode.org/wiki/Combinations#C#
see also https://rosettacode.org/wiki/Combinations#Nim
iterator combinations[T](d: openArray[T]; r: int): seq[T] =

307

https://rosettacode.org/wiki/Combinations

 var stack: seq[int]
 var o = newSeq[T](r)
 stack.add(0)
 while stack.len > 0:
 var ip = stack.pop
 var op = stack.len
 while ip < d.len:
 if r - op > d.len - ip: # not necessary, early exit of loop
 break
 o[op] = d[ip]
 inc(ip)
 inc(op)
 stack.add(ip)
 if op == r:
 yield o
 break

for el in combinations([1, 2, 3, 4, 5], 3):
 echo el

for el in combinations("ABCDE", 3):
 echo el

This algorithm is similar to our earlier solution, but it avoids the ugly pushing of two items on the
stack each time. The main difference between this textbook algorithm and our own attempt is that
in the inner while loop the position indices op and ip are both increased. This leads to the fact, that
for our initial example with n == 5 and r == 3 the seq o is constructed as '1', '12', and '123'. For
'123', the condition op == r is true, so that value is yielded, and the inner loop terminates. The
outer loop continues with ip == 3 and op == 2, generating the value '124' for o, which is again
yielded, and so forth. So this stack based solution is a depth-first algorithm as desired. In the inner
loop, we use again the optional test if r - op > d.len - ip: to exit the loop early when it is clear
that we could not reach the condition op == r for an yield. This textbook solution is short and sim
ple, and works for all input data, so it may be the best choice.

An iterative solution without a stack
Rosetta-Code has another nice solution, which is similar to our own upcounting variant, and is
available as C code. A possible translation to the Nim language is provided below:

idea based on C example from https://rosettacode.org/wiki/Combinations#C
see also https://rosettacode.org/wiki/Combinations#Nim
from std/sequtils import toSeq
iterator combinations[T](d: openArray[T]; n: int): seq[T] =
 var res = newSeq[T](n)
 var c = toSeq(0 ..< n)
 block comb:
 while true:
 for i in 0 ..< n:

308

 res[i] = d[c[i]]
 yield res
 var i = n - 1
 if c[i] < d.high: # optional fast path
 inc(c[i])
 continue
 while c[i] >= d.len + i - n:
 dec(i)
 if i < 0:
 break comb
 inc(c[i])
 while i < n - 1:
 c[i + 1] = c[i] + 1
 inc(i)

for el in combinations([1, 2, 3, 4, 5], 3):
 echo el

for el in combinations("abcde", 3):
 echo el

The idea behind the algorithm is easy to understand when we assume that it works by shifting the
1's items of the abstract mask pattern shown at the beginning of this section. For an arbitrary
numeric output value, e.g., '134' with corresponding mask value 'x_xx_', we try starting from the
right to shift an 'x' further to the right, to get the next larger numeric value. Here, the symbolic
mask shift just means that we increase the numeric value at an index position of our output data.
That might result in the tuple (135 x_x_x). When we have shifted one mask position to the right, we
have to shift all positions to the right of it to the left, to ensure that our generated value is the next
larger one. You may compare the mask patterns from the beginning of this section to verify this
strategy. This combinations() algorithm uses internally input data that is a sequence of integers
starting at zero, and that is created with the statement c = toSeq(0 ..< n) at the beginning of the
iterator. The iterator uses an outer while true loop, with two inner while loops. The first of these
tries to find a number in the current output that can be increased (shifted to the right). If no candi
date is found, the iterator terminates, and otherwise that value is increased. After that, the second
inner while loop shifts all positions on the right fully to the left, which just means that these posi
tions all get the value of the direct left neighbor plus one to create the smallest allowed value. The
test if c[i] < d.high: is an optimization: If rightmost item can be increased, we are already done,
we don’t have to execute the two inner while loops.

This algorithm has the advantage that no stack variable is needed, but the disadvantage that it
works internally only for sequences of numbers starting with zero. To allow using it with arbitrary
data, we use the intern numeric data as an index for our actual data array d. The for loop after the
while true expression copies the matching data values into the res seq, which is then returned by a
yield statement.

References:

• https://en.wikipedia.org/wiki/Combination

• https://rosettacode.org/wiki/Combinations

309

https://en.wikipedia.org/wiki/Combination
https://rosettacode.org/wiki/Combinations

Sorting
Sorting a sequence or an array of numbers is typically a component of each computer program
ming course. While we would not typically code a sorting algorithm for the actual software that we
write, instead using the generic sorting algorithm from the standard library, learning about sorting
algorithms can teach us some basic programming skills. When we sort a small number of items
manually, we would typically use selection or insertion sort intuitively: For selection sort, we pick
the smallest element and move it to position one, then pick the next smallest item and move it to
position two. This strategy is easy to implement and works not badly for small quantities. For larger
containers, an algorithm like QuickSort or MergeSort gives better performance.

Selection sort

#[<--s.len
5
7 <-- i
4 <-- k, x == 4
6 <-- j
3
2 first three entries are already sorted
1
]#

proc selectionSort(s: var seq[int]) =
 var i: int # used to step through the still unsorted range
 var j = 0 # lower bound for still unsorted range
 var k: int # position of currently smallest candidate
 var x: int # and its value

 while j < s.len: # while there is an unsorted section left
 i = j # start with i one above the already sorted range
 x = s[i]; k = i # assume first element is the smallest
 inc(i) # continue with next one in the still unsorted range
 while i < s.len: # while there are unchecked candidates
 if s[i] < x: # that one is smaller than current candidate
 x = s[i] # remember its value
 k = i # and remember its position
 inc(i) # examine next candidate
 swap(s[j], s[k]) # exchange smallest value with the one currently at position k
 inc(j) # sorted range increased by one

import std/[random, sequtils]
proc main =
 var s = newSeqWith(10, rand(100))
 s.selectionSort
 echo s

main()

310

The comment at the top of the previous example shows a partially sorted list of 7 integer numbers.
The lowest three positions already contain the sorted numbers 1 to 3. The next four positions are
still unsorted. For the sorting process, we need the three indices i, j, k, and the variable x to store an
actual value for the comparison. The index j is the lower bound for the still unsorted range, j starts
at zero, obviously. The variable x stores the currently smallest value of the still unsorted range, and
k is the index position of that value. Finally, i is a counter that is used to step through all the values
of the unsorted range. The outer loop is executed as long as j is smaller than the length of the
sequence that we want to sort. We set i to the value of j, k to the same value, and assume initially
that s[i] is the smallest value from the still unsorted range. That value is stored in x. Then we exe
cute the inner while loop until we have processed all elements of the still unsorted range. When
ever we find an element, that is smaller than x, we store that position in k, and the value in x. When
the inner loop has finished, we exchange the smallest value with the first element of the still
unsorted range. This way, the sorted range increases, and the unsorted range decreases by one.

To test our sorting procedure, we generate some random numbers, sort them, and print the result.
The time complexity of selection sort is said to be O(n^2), where n is the number of values to sort. So
the effort increases quadratically with the number of values. This is because we have to test all the
still unsorted values just to increase the number of sorted values by one. Selection sort has a nat
ural behavior, that is, for an already sorted array the test s[i] < x would be always false, and we
would have to do no movement of values in that case. So performance is best for an already sorted
or partly sorted list, and the sorting is stable in the sense, that we do not move elements when it is
not really necessary. In one of the following sections, we will discuss the QuickSort algorithm,
which is not a stable sorting method: Elements with equal values may be moved with QuickSort.
For simple numbers, this doesn’t impact the result, as numbers are indistinguishable. But when we
sort objects, maybe persons by age, persons of the same age would be exchanged by QuickSort,
which may not be desired.

Note, that the code above is not really optimized for performance yet. One possible improvement is
to iterate the two loops not from zero to s.len, but in the opposite direction. In that way, a compari
son of loop indices with a constant value, zero in this case, could be used to terminate the loop.
Comparison with constants can be faster than comparison with actual variables, and comparison
with zero is generally the fastest. Note that we compared indices with s.len() in the previous code,
which isn’t too bad, as len() is a property of the seq data structure, so the compiler should be smart
and replace s.len with just a field access without proc call overhead.

We started this section by thinking about how we would sort a small number of items lying
on the table manually. This strategy is often effective. Sometimes, it can even help to ask how
a child would solve a problem, to find a way how to do it with the computer.

Insertion sort
Insertion sort is another simple sorting method, that some card players like to use: They hold two
sets of cards in their hand, one unsorted set, and one sorted set, which is initially empty. They pick
one card from the unsorted set and insert it at the right position in the already sorted set. That
action is repeated until the unsorted set is empty. For our next example, we sort our data not in
place, as we did in the previous example, but we generate a new sorted copy:

311

#[
unsorted sorted
<-- k
4
7 3 <-- result.high
5 2
6 1
]#

proc insertionSort(s: seq[int]): seq[int] =
 var j: int # current position in the new, sorted range
 var k = s.len # index one above the still unprocessed range
 var x: int # the value we have to insert next
 while k > 0: # as long as we have still unprocessed entries
 dec(k)
 x = s[k]
 j = result.high # top of sorted range
 result.setLen(result.len + 1) # reserve space for one more entry
 while j >= 0 and x < result[j]: # move the already sorted entries up
 result[j + 1] = result[j]
 dec(j)
 result[j + 1] = x # insert x

import std/[random, sequtils]
proc main =
 var s = newSeqWith(10, rand(100))
 echo s.insertionSort

main()

The commented code preceding the program code shows the still unsorted numbers on the left, and
3 already sorted numbers on the right. For the sorting process, we need two index variables j and k,
and one variable, called x, to store the actual value that we have to insert. The variable k is used as
the index of the top entry of the still unsorted range. To insert the value x in the already sorted
result, we first reserve space for one more entry by calling setLen(), and then iterate over the sorted
values and move them one place to the top. We do that, moving to the top, as long as we have not
already reached the bottom of the sorted range and as long as the current entry is larger than the
value x, which we want to insert. We take the values from the top of the unsorted range, as that is
convenient, but of course, we could pick an arbitrary element from the unsorted range.

Insertion sort has O(n^2) cost, as for each element, that we take from the unsorted range, we have
to iterate over the sorted range to insert it. As we have to move elements before we can insert an
element, insertion sort is slow for larger containers. Selection sort, which also has an O(n^2) com
plexity, should be faster, as it does not involve an expensive shift of many elements.

When you look at the example code, you may immediately find two possible improvements: We do
not really need the variable x, as we can just use s[k] instead. The compiler should optimize the
code so that the subscript operator is not executed multiple times for the same index k, so the use of
s[k] or x should make no difference to the performance. And we call setLen() in the outer loop to

312

increase the capacity of the result sequence by one each. Of course, setting capacity only one time
to the value of s would suffice, as obviously, the result has the same length as our input data.
Another possible optimization would be to take advantage of the fact that the destination sequence
is sorted so that we would not have to do a linear search to find the insertion position, but we could
use a binary search. But that would be more complicated and the benefit would be not large.

Quick sort
As the name implies, this sorting method is one of the fastest. We will explain it in some detail with
various variants, as it can teach us two important concepts: Recursion and avoiding recursion by
use of a stack container.

The idea of the QuickSort algorithm is simple, and the code is also simple and short, but we have to
care for some details, like exact index stop positions. Generally, sorting seems to be an O(n^2) oper
ation, at least from the two traditional sorting methods, Insertion- and Selection-Sort, it seems to be
the case. So, doubling the container size seems to increase the required sorting time by a factor of
four, which is detrimental for large arrays or sequences. The trick of QuickSort is, that instead of
sorting a container with n elements, we just sort the first half and the second half separately, each
with approx n / 2 entries. This would be faster, as 2 * (n/2)^2 is only half of (n)^2. And we do
apply this trick in a recursive manner on each halved range until the range is reduced to only one
or two entries. But to make this work, we have to partition the full range in the first half r1, so that
all entries of range r1 are smaller or equal to a median value x, and so that all entries in the second
half r2 are all greater or equal to the median x. Let us consider an example with six numbers:

5 3 2 8 1 7
1 3 2 8 5 7

To partition that set of numbers, we only need to exchange the numbers 5 and 1, using the values 5
or 4 as a possible median. Exchanging numbers in an array or a seq is a fast O(n) operation, we have
to iterate the container only once. The problem is finding the median. For picking a perfect median,
we would need a sorted container, so that we could pick the center entry. However, our container is
unsorted. If it were sorted, our work would already be done. Note, that even summing up all entries
and dividing by n would give only the average value, not the median. Average and median can be
very different, e.g. for many small numbers and a few very large ones. But in practice, picking an
estimation for the median, maybe picking one by random from the full range, or picking the center
entry is good enough. That choice will not really halve the whole range in each step, but on average
it splits the range into two parts, with not too different sizes. This works really well when the input
data looks like random numbers, but it may work badly in some unlikely cases when all the input
numbers are equal or are already sorted. Already sorted can indeed occur — for that case, picking
the center elements of the range gives the perfect median, so we will choose that strategy.

Partitioning the full range is basically very simple: We move from left to right with index i and stop
when we find a value s[i] that is not smaller than our median x. And we do the same from the right
to the left, with index j, until we find a value, that is not greater than median x. After we have done
that, we can just exchange the values at s[i] and s[j] and continue. We continue until i is close to
j. The difficult part is to handle this terminating condition exactly, that is, to stop exactly at the right
position so that the first half really contains all entries with values less or equal to median x, and

313

that the second half contains only entries with values equal or greater than median x. To make it
more clear: Such a partition decouples the two ranges. Sorting the whole range would result in the
same state as sorting the first and second ranges on their own.

To write our actual sorting function, we utilize the fact that Nim, like most modern programming
languages, supports recursion, meaning a function can call itself again. We saw at the beginning of
the book a few examples of that. So we can pass to our function the initial full container, then the
function can partition the container in the first and second half and call itself again on the two
parts. This way, the actual size of the ranges to sort decreases, and finally recursion stops when the
range contains only one or two elements. For size one we have to do nothing at all, but for size two
we may have to exchange the two elements if the order is wrong.

A naive implementation might create two new sequences for each function call to handle the two
parts, partition the initial sequence by inserting the values into one of the new shorter sequences,
call itself on both parts, and finally join the parts and return the result — either directly or as a var
parameter. But that would be really slow. A much simpler and faster solution is when we work all
the time on the same container, and just tell the function, which ranges the function has to work on.
So, we pass the entire sequence and two integers, a and b, to the function. These integers specify the
range to process: s[a], s[a +1] .. s[b].

from std/algorithm import isSorted, sort
import std/monotimes

proc qsort(s: var seq[int]; a, b: int) =
 assert a >= 0 # a .. b is the range that we have to sort
 assert b < s.len
 assert b - a > 1 # it may work for smaller intervals, but this is the intended use
case
 let x = s[(a + b) div 2] # use element from center of range
 # var x = s[a] div 2 + s[b] div 2 # bad, x can be smaller than smallest entry in
range
 # x = s[a .. b].min # worst case test!
 var i = a
 var j = b
 while true:
 while s[i] < x:
 inc(i)
 while s[j] > x:
 dec(j)
 if i < j:
 swap(s[i], s[j])
 inc(i)
 dec(j)
 else:
 break
 dec(i)
 inc(j)
 assert i >= a
 assert j <= b
 if i - a > 1: # still more than 2 entries

314

 qsort(s, a, i)
 elif i - a > 0: # two entries
 if s[i] < s[a]: # wrong order
 swap(s[i], s[a])
 if b - j > 1: # and the same for the other half
 qsort(s, j, b)
 elif b - j > 0:
 if s[b] < s[j]:
 swap(s[b], s[j])

proc quickSort(s: var seq[int]) =
 if s.len == 2 and s[0] > s[1]: swap(s[0], s[1])
 if s.len > 2:
 qsort(s, 0, s.high)

import std/random
proc main =
 var s: seq[int]
 var start: MonoTime
 randomize() # give us different random numbers for each program run
 for i in 0 .. 1e5.int:
 s.add(rand(1e8.int))
 for i in 0 .. 9:
 s.shuffle
 s.quickSort
 assert(isSorted(s))
 for i in 0 .. 1e7.int:
 s.add(rand(1e8.int))
 start = getMonotime()
 s.quickSort
 echo getMonotime() - start
 assert(isSorted(s))
 s.shuffle
 start = getMonotime()
 s.sort()
 echo getMonotime() - start
main()

The function qsort() does the entire work. It is called from the function quicksort() passing it the
whole sequence and the interval to sort. For the first call, the interval is the complete content of the
seq, from s.low to s.high. Function qsort() first asserts that the range is valid, that is that b > a and
that both indices are valid positions in the sequence s. That check makes it easier to find stupid
errors, the assert is automatically removed, when we finally compile with -d:release. We set the
iterating indices i and j to the interval boundaries a and b, and enter an outer loop. In that outer
loop, we let run i and j to the center of the interval, as long as the actual entry at the position i or j
belongs in the range. If both inner loops have stopped, we swap the entries at positions i and j. As
positions i and j contain now again valid entries, we can move both indices one step further to the
center. If i and j become the same, we are done. Unfortunately, both may stop too late, so we move
both one position back after the outer loop has terminated. You may create a small example with
pen and paper, to recognize how the indices behave in detail, and why a fix by one is necessary. The

315

remainder of the qsort() proc is really easy: For both partitions, we check if the interval size is still
larger than two entries, in that case, we call qsort() again, to continue with partitioning and sorting.
But if the size is two entries, then we just swap() them, if the order is wrong. If the size of the range
is just one, we have nothing to do at all.

We test our quicksort() procedure by calling it from another procedure called main(). In that main()
function, we fill a seq with random integer values, and shuffle() and sort() it a few times. Shuffle()
reorders the entries by random. After our call of quicksort(), we call isSorted() from Nim’s standard
library to check the success of our sorting. After these tests, which do some warm-up of the CPU for
us, we add more random entries, and again sort and test it, while we record the needed time with
module ᴍoɴoᴛɪᴍᴇs, as we did before in the Timers section. To get a feeling about the performance
of our sorting procedure, we shuffle() again and sort this time with the sort() proc from Nim’s ᴀʟɢo
ʀɪᴛʜᴍ module. Sort() from ᴀʟɢoʀɪᴛʜᴍ module uses currently another sorting method called merge
sort, which has the advantage, that it is a stable sorting algorithm, but it could be a bit slower than
QuickSort. And sort() from the ᴀʟɢoʀɪᴛʜᴍ module may pass a cmp() procedure around, which may
cost some performance, while our plain, non-generic proc, compares entries directly with the < and
> operators. So it is not surprising that our procedure is a bit faster.

You may wonder if it is really necessary to pass the sequence s for each call of qsort(), as for all
times the same seq is used. Indeed, Nim supports nested procedures, so we could just make the
qsort() proc local to the quicksort() proc, and let qsort() work (as a closure) on the s variable of
proc quicksort(). However, this currently does not compile, as sequences cannot be used by closure
procedures. But actually passing the sequence to the qsort() procedure should be only a minimal
overhead.

One general concern of QuickSort is that the sort is not stable. When we sort an already sorted
sequence again, entries with the same value may move. For plain numbers, this is not really an
issue, we do not really notice it, as we can’t mark a number in some way, plain numbers are indis
tinguishable just as elementary particles like electrons and protons are. But when we sort a con
tainer with objects by some field, then we notice that objects with the same value for sorting may
move. The other concern of QuickSort is a general problem of a recursive algorithm: Each new call
of a procedure generates some stack usage, as proc parameters are typically passed on the stack
and because the proc may allocate its local data variables on the stack. So many nested calls may
need a very large stack, and the program may fail with a stack overflow error. Typically, we have
no real troubles with stack overflow, as for each partition, the size of the two new partitions is
nearly halved, so that process stops soon. But imagine someone prepares a special data set for our
sort proc. That data could be prepared in such a fashion, that at the center of each range, where we
pick the estimated median value from, always an extreme value is stored. So our partition would
work very badly, in each step we would get a new range with only one element, and one with n - 1
elements. So the recursion depth would go very deep, and the performance would be very bad also.
Preparing such a data set would be difficult, but possible in theory. One way to protect us from that
attack would be to select the median by random. But unfortunately, all strategies different from
picking the leftmost, the center, or the rightmost entry as median are not very fast and make the
whole sorting significantly slower. Note, that the strategy of not picking a single element as the
median, but calculating a median value, works generally, but has some shortcomings: s[a] div 2 +
s[b] div 2 would not work when both values are odd, as we then would get a value that can be
smaller than all of our entries and our function would fail. We would have to add one to the aver
age value when both summands are odd, and that fix does again cost performance. And calculating

316

the average by (s[a] + s[b]) div 2 could generate an overflow when both summands are large.

Because of the stack size restrictions, we have a good motivation to show how we can replace
recursion with plain iteration when we provide a "buffer" variable that acts as a data stack. For
each new partition of our data, we have to put only the two bounds a and b on that data stack,
which is not as much as a recursive proc would put on the real computer stack. The modifications
to our code from above are tiny.[1]

from std/algorithm import isSorted, sort
import std/monotimes

proc qsort(s: var seq[int]) =
 var stack: seq[(int, int)]
 var maxStackLen: int
 stack.add((s.low, s.high))
 while stack.len > 0:
 if stack.len > maxStackLen:
 maxStackLen = stack.len
 var (a, b) = stack.pop
 assert(a >= 0 and b < s.len and b - a > 1)
 let x = s[(a + b) div 2]
 var (i, j) = (a, b)
 while true:
 while s[i] < x:
 inc(i)
 while s[j] > x:
 dec(j)
 if i < j:
 swap(s[i], s[j])
 inc(i) ; dec(j)
 else:
 break
 dec(i); inc(j)
 # assert(i >= a and j <= b) caution, this is not always true!
 if i - a > 1:
 stack.add((a, i))
 elif i - a > 0:
 if s[i] < s[a]:
 swap(s[i], s[a])
 if b - j > 1:
 stack.add((j, b))
 elif b - j > 0:
 if s[b] < s[j]:
 swap(s[b], s[j])
 echo "Max Stack Length: ", maxStackLen

proc quickSort(s: var seq[int]) =
 if s.len == 2 and s[0] > s[1]: swap(s[0], s[1])
 if s.len > 2:
 qsort(s)

317

import std/random
proc main =
 var s: seq[int]
 var start: MonoTime
 randomize()
 for i in 0 .. 1e5.int:
 s.add(rand(1e8.int))
 for i in 0 .. 9:
 s.shuffle
 s.quickSort
 assert(isSorted(s))
 for i in 0 .. 1e7.int:
 s.add(rand(1e8.int))
 start = getMonotime()
 s.quickSort
 echo getMonotime() - start
 assert(isSorted(s))
 s.shuffle
 start = getMonotime()
 s.sort()
 echo getMonotime() - start
main()

We added a variable called stack, which is a seq that stores integer tuples. The qsort() proc first
stores the borders of the whole seq on the stack and then executes a loop that, in each iteration,
takes a set of two borders from the stack and processes that range. It may sound a bit strange that
we start by putting the entire range onto the stack and then take it from the stack immediately at
the start of the loop. But that makes more sense when we look at the bottom of the qsort() proc.
Instead of recursively calling qsort() again, we just put the borders of the two new partitions on the
stack and continue. The whole process terminates when the stack becomes empty, as then all parti
tions are processed. Note that the actual partition code and the main() procedure are still
unchanged. We added a maxStackLen variable to get a feeling of how large our stack has to be. Actu
ally, not that large, as the partition size shrinks in a logarithmic way. So we could replace the seq,
that we use now as a stack, with a plain array, as sequences have some overhead and the add() is
slower than plain index access. But, how can we prepare for worst-case scenarios? Indeed, there
exists a simple solution: The worst case occurs, when we first put a tiny one-element range on the
stack, and then the large one, as we would continue with the large one in the same way in the next
loop iteration. The other way round would be fine. If we put the tiny range on the stack last, the
next iteration would pick that one, and the iteration would stop immediately, or at least very soon,
as the ranges drop to two or one entry. When an iteration for a range stops, all ranges pushed to the
stack are removed already again, so the total stack size will never become large. So the trick is to
just sort the partitions in a way that we put the larger partition first on the stack and the smaller
partition second. So the next iteration picks the smaller ones and the whole process stops soon. This
way a stack array of 64 entries should be enough, as the maximum needed stack size to sort a {seq]
with 2^64 entries should be log2(2^64).

from std/algorithm import isSorted, sort

318

import std/monotimes

proc qsort(s: var seq[int]) =
 var stack: array[64, (int, int)]
 var stackPtr: int
 var maxStackLen: int
 stack[0] = (s.low, s.high)
 while stackPtr >= 0:
 if stackPtr > maxStackLen:
 maxStackLen = stackPtr
 let (a, b) = stack[stackPtr]; dec(stackPtr)
 assert(a >= 0 and b < s.len and b - a > 1)
 let x = s[(a + b) div 2]
 var (i, j) = (a, b)
 while true:
 while s[i] < x:
 inc(i)
 while s[j] > x:
 dec(j)
 if i < j:
 swap(s[i], s[j])
 inc(i); dec(j)
 else:
 break
 dec(i); inc(j)
 # assert(i >= a and j <= b) caution, this is not always true!
 var c, d: int
 for u in 0 .. 1:
 if (i - a > b - j) == (u == 0):
 (c, d) = (a, i)
 else:
 (c, d) = (j, b)
 if d - c > 1:
 inc(stackPtr) # inc before push!
 stack[stackPtr] = (c, d)
 elif d - c > 0:
 if s[c] > s[d]:
 swap(s[c], s[d])
 echo "Max Stack Length: ", maxStackLen

proc quickSort(s: var seq[int]) =
 if s.len == 2 and s[0] > s[1]: swap(s[0], s[1])
 if s.len > 2:
 qsort(s)

import std/random
proc main =
 var s: seq[int]
 var start: MonoTime
 randomize()
 for i in 0 .. 1e5.int:

319

 s.add(rand(1e8.int))
 for i in 0 .. 9:
 s.shuffle
 s.quickSort
 assert(isSorted(s))
 for i in 0 .. 1e7.int:
 s.add(rand(1e8.int))
 start = getMonotime()
 s.quickSort
 echo getMonotime() - start
 assert(isSorted(s))
 s.shuffle
 start = getMonotime()
 s.sort()
 echo getMonotime() - start
main()

Instead of processing the two new partitions at the end of the qsort() procedure each, we apply only
one processing code block now, which we execute in a loop, that is executed twice. At the start of
that loop, we assign the actual interval boundaries to the variables c and d. That assignment
depends on the actual loop index u so that we push the larger range always first on the stack. You
may modify the condition u == 0 to u != 0 and observe what happens to the maximum used stack
depth. We could write that condition also with a boolean loop variable and a xor operator like

 for u in [false, true]:
 if (i - a > b - j) xor u:

We should not believe everything we think

This is true even for what seems to be correct. Our non-recursive function seems to be fine, and
indeed inverting the == (u == 0) condition makes a difference for random data, so is it correct?
Well, when we think about it again the next day, we might start having doubts. The outer loop pops
one entry from the stack, but in the loop, we may push two new entries. Pushing the smaller inter
val helps, as we continue with the smaller interval in the next iteration and so remove it from the
stack. But the net effect is still that we push one interval onto the stack for each iteration, and in the
worst case, that interval shrinks only by one in each iteration. So, it should still not work.

Well, there are rumors that solutions exist. When we think about it, we may ask ourselves if we can
just continue with one interval in a loop and push only the other one on the stack. And indeed, that
is possible, and this time we did testing for the worst-case scenario:

from std/algorithm import isSorted, sort
import std/monotimes

proc qsort(s: var seq[int]) =
 var stack: array[64, (int, int)]
 var stackPtr: int = -1 # empty
 var maxStackLen: int

320

 var a = s.low
 var b = s.high
 while true:
 if b - a == 1: # done with actual interval, but we may have to swap()
 if s[a] > s[b]:
 swap(s[a], s[b])
 if b - a > 1: # interval has still more than two entries, so continue
 discard
 elif stackPtr >= 0: # get next interval from stack
 (a, b) = stack[stackPtr]; dec(stackPtr)
 else:
 break # all done
 if stackPtr > maxStackLen:
 maxStackLen = stackPtr
 assert(a >= 0 and b < s.len and b - a > 1)
 let x = s[(a + b) div 2]
 # let x = s[a .. b].max # worst case test! Slow, test with smaller container size.
 var (i, j) = (a, b)
 while true:
 while s[i] < x:
 inc(i)
 while s[j] > x:
 dec(j)
 if i < j:
 swap(s[i], s[j])
 inc(i); dec(j)
 else:
 break
 dec(i); inc(j)
 # assert(i >= a and j <= b) caution, this is not always true!
 if (i - a < b - j): # put large interval on stack and cont. directly with the
small
 swap(i, b)
 swap(a, j)
 if i - a > 1: # interval has more than two entries, needs further processing
 inc(stackPtr) # inc before push!
 stack[stackPtr] = (a, i)
 elif i - a > 0: # two entries, we may have to swap()
 if s[a] > s[i]:
 swap(s[a], s[i])
 (a, b) = (j, b) # the smaller interval, we continue with that one
 echo "Max Stack Length: ", maxStackLen

proc quickSort(s: var seq[int]) =
 if s.len == 2 and s[0] > s[1]: swap(s[0], s[1])
 if s.len > 2:
 qsort(s)

import std/random
proc main =
 var s: seq[int]

321

 var start: MonoTime
 randomize()
 for i in 0 .. 1e5.int:
 s.add(rand(1e8.int))
 for i in 0 .. 9:
 s.shuffle
 s.quickSort
 assert(isSorted(s))
 for i in 0 .. 1e7.int:
 s.add(rand(1e8.int))
 start = getMonotime()
 s.quickSort
 echo getMonotime() - start
 assert(isSorted(s))
 s.shuffle
 start = getMonotime()
 s.sort()
 echo getMonotime() - start
main()

The modifications to the code are again tiny. We use an outer while true: loop, which continues
with the interval a .. b until its size is less than three entries. Then it pops() a new interval from
the stack. At the end of that outer loop, we only put one interval on the stack and directly continue
with the other interval. But which interval should we push on the stack, and which one should we
process directly further in the outer loop? The solution is to process the smaller interval further in
the outer loop, as we are soon done with it. For processing that smaller interval, we may push more
ranges onto the stack, but we soon reach interval sizes of less than three, and then we start popping
intervals from the stack. And when we are done with that, we pop the larger interval again from
the stack. This way, the worst case, where we pick each time a min or max value as median, has the
smallest stack consumption, that is one entry. We push the large interval with size n - 1 on the
stack and continue with the tiny one-entry range, which signals that we are done with that interval
in the next loop iteration, and so the just pushed n - 1 interval is popped from the stack again. This
continues in this way, slow but with minimal stack consumption.

From the above code, it becomes clear that for our initial recursive qsort() function, changing the
order in which we process the partitions would not really help, as we continue the recursion until
all is processed. There is no intermediate pop() involved.

Perhaps you still wonder why the tiny inner loops use the conditions while s[i] < x: and not while
s[i] <= x:, as we said that both partitions are allowed to contain the median element. Well, with
<=, there would be no guaranteed stop condition for the interval, so indices could run out of the
interval. Using an additional condition like and i <= b would make it slower. Another possible mod
ification would be to not use inner while loops at all. Tiny while loops with only one simple termi
nation condition are fast, but the inner while loops would always terminate fast for random data.
So we may try instead something like

 while true:
 if s[i] < x:
 inc(i)

322

 elif s[j] > x:
 dec(j)
 else:
 if i < j:
 swap(s[i], s[j])
 inc(i); dec(j)
 else:
 break
 dec(i); inc(j)

You may try that variant yourself, or perhaps look for other variants in internet sources or text
books. The intention in this section was not to present a perfect sorting function, but rather to teach
you some basic coding strategies and related traps.

Merge sort
Initially, we did not intend to discuss the actual MergeSort algorithm at all, as it is a bit more com
plicated, and whenever we may have seen a sketch of it somewhere, it is generally not easy to
remember details.[2] But MergeSort is indeed an important algorithm; it is used by default in Nim’s
standard library, and as we have discussed QuickSort already in some detail, we should be pre
pared for MergeSort now. When we regard the name Merge, which is some form of joining multiple
sources to one destination, we may begin to remember the idea of MergeSort: The trick of Quick
Sort was, that we tried to split, in a recursive manner, the set of all container elements into two sub
sets, which we can process separately. That improves performance, as sorting is basically an O(n^2)
process, and 2 * (n/2)^2 is only half of n^2. For QuickSort, we partitioned the initial range into two
ranges a and b, where all elements of range a are less or equal to a median element x, and all ele
ments of range b are greater or equal to the median x. That way, we decoupled the two ranges, we
can sort a and b independently, and get a fully sorted range. MergeSort starts also by splitting the
full range into two parts, but it really only splits, without any form of rearrangement. Then it con
tinues with sorting each part independently. That sounds strange at first, as we get two sorted parts
a and b, but of course, we can not simply append one to the other. The idea of the whole algorithm
becomes clear immediately when we think about how we can find the smallest elements of the
joined content from a and b. That one is obviously the smallest value of a or the smallest value of b,
min(a, b) = min(min(a), min(b)). But when a and b are already sorted, then the minimum value of
each is the first element, and so one of these elements at index position zero is the smallest one for
a and b joined. And this condition holds even when we pick and remove the smallest element from
a or b.

So the basic algorithm is this: Split the entire container into parts a and b and sort them separately.
Then create a new, sorted container by iteratively picking the first elements from a or b, whichever
is actually the smaller one.

Unfortunately, it seems impossible to sort the initial container in place in this way, as we would
always take elements from the front of both and put them at the front of the destination, so those
newly inserted elements could overwrite still unprocessed elements. So, we will try to give a sketch
of a very slow, unoptimized algorithm, which creates and returns a new sorted container first, to
learn the fundamental idea of the algorithm:

323

proc msort(s: seq[int]; a, b: int): seq[int] =
 assert(b - a >= 0)
 if b - a == 0:
 result.add(s[a])
 return
 elif b - a == 1:
 var (a, b) = (s[a], s[b])
 if a > b:
 swap(a, b)
 result.add(a)
 result.add(b)
 return
 result = newSeq[int](b - a + 1)
 var sl = result.len
 assert b - a > 1
 var m = (a + b) div 2
 assert m >= a
 assert m < b
 var s1, s2: seq[int]
 s1 = msort(s, a, m)
 var (i, j) = (a, m)
 s2 = msort(s, m + 1, b)
 assert s1.len + s2.len == result.len
 var (k, l) = (m + 1, b)
 var l1 = s1.high
 var l2 = s2.high
 while sl > 0:
 dec(sl)
 if l1 >= 0 and l2 >= 0: # merge
 if s1[l1] > s2[l2]:
 result[sl] = s1[l1]
 dec(l1)
 else:
 result[sl] = s2[l2]
 dec(l2)
 else: # plain copy
 while l1 >= 0:
 result[sl] = s1[l1]
 dec(sl); dec(l1)
 while l2 >= 0:
 result[sl] = s2[l2]
 dec(sl); dec(l2)

proc mergeSort(s: seq[int]): seq[int] =
 if s.len < 2:
 return s
 msort(s, s.low, s.high)

import std/[random, algorithm]
proc main =

324

 var s, st: seq[int]
 randomize()
 for i in 0 .. 9:
 s.add(rand(100))
 st = s
 echo s.mergeSort
 assert(s.mergeSort == st.sorted)

main()

The example above is indeed not very complicated. The most daunting task is to get all the indices
right. Due to the involved recursion, and the fact that we have to sort the two parts first before we
can join them, debugging would not be easy. So we added many asserts to early find stupid errors.

The function mSort() starts by checking if the range to sort has only one or two entries, and handles
this simple case directly. Then we allocate the result sequence, find the center position m of the
interval a and b, and sort the intervals a .. m and m + 1 .. b each into a new sequence s1 and s2.
We have decided that we will merge s1 and s2 into the result sequence from the back, starting with
the largest elements. This way, we can count down to zero, which is a bit faster and simpler. We do
an actual merging, as long as s1 and s2 have still elements left. As we do the merge from end to
start, we have to always pick the largest element from s1 or s2. If we have used all the elements
from at least one of the sequences s1 or s2, then there is nothing more to merge, we can just copy
the remaining elements from the other seq, that has elements left. Of course, the above example is
very slow, as we allocate the result and additional the sequences s1 and s2, and we have to copy
many elements.

When we reconsider the problem, we realize that allocating three sequences is excessive. When we
regard both, in-place sorting and sorting with a return value, we may discover, that in-place sorting
allows us to partly reuse the passed container, and we have only to allocate one additional seq with
half the size of the passed container. We copy the second half of the passed container into a newly
allocated seq and then can merge values from the new seq and from the first half of the passed seq
to positions starting at the end of the passed seq, without overwriting values we still have to
process.

This way our code becomes even shorter and basically simpler — we just need to ensure we use the
correct index positions.

proc msort(s: var seq[int]; a, b: int) =
 assert(b - a >= 0)
 if b - a == 0:
 return
 elif b - a == 1:
 if s[a] > s[b]:
 swap(s[a], s[b])
 return
 var m = (a + b) div 2
 assert(m >= a and m < b and b - a > 1)
 var sh: seq[int] = s[(m + 1) .. b]
 var ls = b + 1

325

 msort(s, a, m)
 msort(sh, sh.low, sh.high)
 var lh = sh.high
 var lm = m
 while ls > a:
 dec(ls)
 if lh < 0:
 assert ls == lm
 break
 elif lm < a:
 while lh >= 0:
 s[ls] = sh[lh]
 dec(ls); dec(lh)
 else:
 if sh[lh] > s[lm]:
 s[ls] = sh[lh]
 dec(lh)
 else:
 s[ls] = s[lm]
 dec(lm)

proc mergeSort(s: var seq[int]) =
 msort(s, s.low, s.high)

import std/[random, algorithm, monotimes]
proc main =
 var s: seq[int]
 var start: MonoTime
 randomize()
 for i in 0 .. 1e5.int:
 s.add(rand(1e8.int))
 for i in 0 .. 9:
 s.shuffle
 s.mergeSort
 assert(isSorted(s))
 for i in 0 .. 1e7.int:
 s.add(rand(1e8.int))
 var st = s
 start = getMonotime()
 s.mergeSort
 echo getMonotime() - start
 start = getMonotime()
 st.sort()
 echo getMonotime() - start
 assert s == st
main()

For the merging process, we first test if one of the source areas is already exhausted. If all entries
from the newly allocated seq sh are consumed, then we can just stop because continuing would
only copy elements of the passed container with identical index positions.

326

And if all elements from the first half of the passed container are consumed, we can just copy the
elements from sh into the passed var container. Only if both sources have elements to process left,
then we have to do the actual merging.

When we run the program above, we may find that it is about 50% slower than our QuickSort func
tions. The reason for that may be, that we have to allocate the temporary seq sh, fill it with values,
and merge it back. And the total memory consumption is high, our recursive function calls con
sume for the buffers sh totally the same amount as the initial container. The advantage of Merge
Sort is, that there is no worst-case as for QuickSort, as we do not have to select a median, but can
split the range just at the center, and that the sort is stable, that is merging does not exchange the
position of elements with the same value.[3]

Upon further reflection on the algorithm above, and perhaps sketching the recursive steps for a
short sequence with pencil and paper, we deduce that the additional buffer sh is only needed for
the merging step, and as the merging process occurs from bottom to top, (containers with only one
or two entries are returned immediately, which are merged to a larger section, and these larger sec
tions are again merged …) a single buffer could be used. Therefore, we have modified our example
again. Now the mergesort() procedure allocates the buffer seq with half the size of the actual data
container, and we pass that buffer recursively to the msort() proc for merging only. We call recur
sively msort() on the first and second half of the full range that we have to sort, then copy the
sorted second half into the buffer, and merge the first half and the buffer into the final location.

proc msort(s, sh: var openArray[int]; a, b: int) =
 assert(b - a >= 0)
 if b - a == 0:
 return
 elif b - a == 1:
 if s[a] > s[b]:
 swap(s[a], s[b])
 return
 var m = (a + b) div 2
 assert (m >= a and m < b and b - a > 1)
 msort(s, sh, a, m)
 msort(s, sh, m + 1, b)

 var ls = b + 1
 var lh = b - m - 1
 var lm = m
 #sh[sh.low .. lh] = s[m + 1 .. b]
 for i in 0 .. lh: # a bit faster
 sh[i] = s[m + 1 + i]
 while ls > a:
 dec(ls)
 if lh < 0:
 assert ls == lm
 break
 elif lm < a:
 while lh >= 0:
 s[ls] = sh[lh]

327

 dec(ls); dec(lh)
 else:
 if sh[lh] > s[lm]:
 s[ls] = sh[lh]
 dec(lh)
 else:
 s[ls] = s[lm]
 dec(lm)

proc mergeSort(s: var seq[int]) =
 if s.len == 0: return
 var sh = newSeq[int](s.len div 2)
 msort(s, sh, s.low, s.high)

import std/[random, algorithm, monotimes]
proc main =
 var s: seq[int]
 var start: MonoTime
 randomize()
 for i in 0 .. 1e5.int:
 s.add(rand(1e8.int))
 for i in 0 .. 9:
 s.shuffle
 s.mergeSort
 assert(isSorted(s))
 for i in 0 .. 1e7.int:
 s.add(rand(1e8.int))
 var st = s
 start = getMonotime()
 s.mergeSort
 echo getMonotime() - start
 start = getMonotime()
 st.sort()
 echo getMonotime() - start
 assert s == st
main()

An additional tiny performance improvement results from the fact, that we now pass the seq s and
the buffer sh as openArrays. This is generally a good idea, as we can so sort arrays also with the same
sorting procedure, and it improves performance, as this way the actual data buffer is directly
passed to the qsort() proc, while passing a seq means, that we pass the opaque seq structure, which
contains a pointer to the actual data. In the example above, we do not only call isSorted(), to prove
our result, but we really sort a copy of our data with a sorting routine from Nim’s standard library
to ensure that our result is not only sorted data but that it is indeed based on the actual values. That
is a good idea because although the algorithm is simple, getting some indices wrong may give us
wrong results.

Our recursive merge sort routine is really not that bad. It does a fast, stable sort, and needs only a
single buffer of half the size of our actual data. As the interval size is halved in each recursion step,
the max recursion depth should be only 64 for a gigantic container with 2^64 elements. As the recur

328

sion occurs in a dept first fashion, that is msort() calls itself until range size is only one or two ele
ments, then recursion continues in other branches of the whole sorting three, there should be
never more than log2(n) actual recursion steps stored on the CPU stack. Non-recursive, iterative
merge sort algorithm exists, but converting the recursive algorithm into an iterative one is not as
simple as for the QuickSort case. The reason is, that msort() has first to partition the input range,
then call msort() on both subranges and finally do the merging. We will not try to present in this
book an iterative msort(), which you may find in textbooks, or somewhere on the Internet, as that
would be a bit too much for an introducing course.

We did the QuickSort and the MergeSort in a top-down fashion, that is we split the initial container
into two subpartitions, and continue in this way until we have only ranges with one or two entries,
and then do the merging from bottom to top. For MergeSort, we could just start from the bottom,
joining single adjacent elements to sorted tuples of two entries, and when done with that, merging
the tuples of two to sorted tuples of 4, and so on. This would work really well when the initial num
ber of elements in our container is a power of two, and it would work well iterative without recur
sion. Unfortunately, in most cases, the container size is not a power of two, so such a bottom-up
merge sort needs some math to get all the range sizes right. But the bottom-up process has a big dis
advantage on modern hardware, as it has no locality for element access operations: We would iter
ate repeatedly over all the container entries in sequential order, so the CPU cache can not support
our element access operation that well.

Other known sorting algorithms are the easy, funny, and slow BubbleSort, or Shell- and Shaker-Sort.
But these are not used in practice. As an exercise, you can try to make our QuickSort or MergeSort
generic and pass a cmp() proc, and make it work for sorting in ascending and descending order. Or,
you may try to fall back to selection sort, when the partitions become small. In theory, SelectionSort
is faster for ranges of only a few dozen elements, but when we have to do a decision about which
one to use inside the qsort() or msort() procedure, then this decision compensates generally for the
advantages again so that the net benefit is tiny. Of course, we would have to test all of our sorting
procedures for special cases, that is for seqs of length 0, 1 or two, and for sequences with all entries
equal, all inversely sorted, or presorted. And we would have to check how performance is when we
sort not containers containing plain data like numbers, but containers whose elements are objects,
strings, or again arrays, or sequences. String sorting is special for various reasons: strings in Nim
are opaque objects, with a pointer to the actual data. This is some indirection, and the actual data
can be located somewhere in the RAM in a cache-unfriendly manner, so the actual comparison
process can be slow. Swapping of strings is also special, as swap() generally just does a pointer
exchange for the data areas, and does not have to copy the actual data. For sorting containers,
where each entry is an array (of characters), the swap would have to copy the data content.

Finally, we should mention that the Python language uses a complicated sorting algorithm called
TimSort, which is a smart mix of various sorting algorithms.

References:

• https://en.wikipedia.org/wiki/Timsort

Iterative merge sort
In the preceding section, we said that an iterative merge sort algorithm might be difficult, and has

329

https://en.wikipedia.org/wiki/Timsort

no significant advantages compared to the recursive version. Actually, after our detailed discussion
of various strategies to convert recursive algorithms to iterative ones in the Combinations sec
tion — and some vacation — it is obvious how we can convert our recursive merge sort algorithm
with only some tiny fixes to an iterative one. Before you continue reading, you should think about a
possible solution yourself for a few minutes as an exercise.

There might be no real benefit of an iterative algorithm, but at least it is some fun to create it. And
an iterative solution might be a good starting point, in the case that we ever should have the
demand for a parallel sorting algorithm using all available CPU cores.

Recall that the recursive merge sort halves the data set size in each recursive step, so the maximum
recursive depth is lg(datasetsize), where lg() (log2()) is the binary logarithm and datasetsize is the
length of our array or seq to sort. As all possible data set sizes are smaller than 2^64 bytes in size on
a 64-bit system, the maximum recursion depth, or the corresponding size of a stack buffer variable
for an iterative solution, is never larger than 64.

The merge sort algorithm has the special property, that the full dataset range is first divided into
two partitions, which are both first sorted again, and finally merged. So an iterative algorithm
might look not that straight forward. But when we think about it a bit longer, there is one easy solu
tion: we need to store just two different actions in our stack variable -- a true sort action of an inter
val and a merge action only. So we would start by placing the interval boundaries for a full sort
action onto the stack, pop() that data, and then push the data for the next full sort action of the two
new partitions onto the stack. Afterward, we’d push the data for a plain merge action. For the two
different action types, we might create an object type, containing a boolean or an enumeration
field specifying the action type, and two integer fields holding the data range to process. But actu
ally, we do not need an object or tuple type. The two boundaries of the data range to process are
always indices of an openArray type, so both values are never negative, and the first value should be
never larger than the second. So we can leave the boundaries as they are for a full sort action, but
exchange them, or make at least one value negative, to indicate that only a merge action is
required. In the following code, we exchanged the two boundaries to indicate the merge action:

proc msort(s, sh: var openArray[int]; a, b: int) =
 type R = tuple[a, b: int]
 var stack: seq[R]
 stack.add((a, b))
 while stack.len > 0:
 var (a, b) = stack.pop
 var m = (a + b) div 2
 if a <= b: # regular interval
 assert(b - a >= 0)
 if b - a == 0:
 continue
 elif b - a == 1:
 if s[a] > s[b]:
 swap(s[a], s[b])
 continue
 assert (m >= a and m < b and b - a > 1)
 #imsort(s, sh, a, m)
 #imsort(s, sh, m + 1, b)

330

 # note that we push intervalls onto stack in inverted order!
 stack.add((b, a)) # merge only
 stack.add((m + 1, b)) # sort
 stack.add((a, m)) # sort
 else: # merge only
 swap(a, b) # we have to swap, because we pushed the interval to merge inverted
onto stack!
 var ls = b + 1
 var lh = b - m - 1
 var lm = m
 #sh[sh.low .. lh] = s[m + 1 .. b]
 for i in 0 .. lh: # a bit faster
 sh[i] = s[m + 1 + i]
 while ls > a:
 dec(ls)
 if lh < 0:
 assert ls == lm
 break
 elif lm < a:
 while lh >= 0:
 s[ls] = sh[lh]
 dec(ls); dec(lh)
 else:
 if sh[lh] > s[lm]:
 s[ls] = sh[lh]
 dec(lh)
 else:
 s[ls] = s[lm]
 dec(lm)

When you compare this modified iterative msort() procedure with the one in the code example
from before, you will notice that the changes are tiny. You can directly replace the recursive msort()
proc from the last example in the preceding section with this one, and compile and run the pro
gram. We have created a tuple type R, which stores the two integer boundaries of the range to sort,
and used a local seq with the base type R as stack. The iterative msort() procedure starts by pushing
the initial interval parameters a and b onto the stack, indicating that a full sort is required. In the
while loop, we pop() a range from the stack, and test if it is a regular interval, or an inverted inter
val. For a regular interval, we test for the trivial cases with interval sizes 1 or 2 first. If the interval
is larger than two elements, we halve it, and push() the two halved intervals onto the stack along
with the full, inverted interval. Note the order in which we push these intervals onto the stack: We
put the full inverted interval first, so it is popped last, keeping the original processing order. For the
case that an inverted interval was popped from the stack, we invert it again to recover the original
values, and proceed exactly as in the recursive case.

As expected, this first iterative solution is not faster than our recursive version, but a bit slower.
One reason might be that we use as stack an ordinary seq data type with its relatively slow add()
operation. As the size of the stack variable is always limited by 64 entries, we can use a plain array
instead. But we have to simulate the push() and pop() operations by updating an explicit stack index
variable for that case.

331

Optimized generic iterative merge sort

proc mergeSort[T](s: var openArray[T]; ascending = true) =
 type R = tuple[a, b: int]

 var sp: int = -1
 var stack: array[64, R]

 template add(r: R) =
 inc(sp)
 stack[sp] = r

 template pop: R =
 let res = stack[sp]
 dec(sp)
 res

 if s.len == 0: return
 var sh = newSeq[T](s.len div 2)

 add((s.low, s.high))
 while sp >= 0:
 var (a, b) = pop
 let m = (a + b) div 2
 if a <= b: # regular interval
 assert(b - a >= 0)
 if b - a == 1:
 if ascending and s[a] > s[b] or not ascending and s[a] < s[b]:
 swap(s[a], s[b])
 elif a != b:
 assert (m >= a and m < b and b - a > 1)
 add((b, a)) # merge only
 add((m + 1, b)) # sort
 add((a, m)) # sort
 else: # merge only
 swap(a, b) # we have to swap, because we pushed the interval to merge inverted
onto stack!
 var ls = b + 1
 var lh = b - m - 1
 var lm = m
 for i in 0 .. lh:
 sh[i] = s[m + 1 + i]
 while ls > a and lh >= 0:
 dec(ls)
 if lm < a:
 while lh >= 0:
 s[ls] = sh[lh]
 dec(ls); dec(lh)
 else:
 if sh[lh] > s[lm] == ascending:

332

 s[ls] = sh[lh]
 dec(lh)
 else:
 s[ls] = s[lm]
 dec(lm)

We have unified the two distinct procedures mergeSort() and msort(), and made them generic. Fur
ther, we use as stack an array instead of a seq, supported by our own push() and pop() templates.
As another minor optimization, we replaced the if lh < 0: break statement with the additional
while condition lh >= 0. Finally, we have introduced a boolean proc parameter, called ascending,
with default true value, to optionally sort in descending order. In the procedure body, we have to
watch for this parameter at two places. In the merging part, we modified the condition to if sh[lh]
> s[lm] == ascending:, which should cost nearly no performance. If we were to use a similar test as
the actual swap() condition, we would get swaps for equal values, which is always the case for a ==
b. So, we now test for the condition b - a == 1 first, and then use the longer condition if ascending
and s[a] > s[b] or not ascending and s[a] < s[b]: as the actual swap() condition. Due to short-cir
cuit evaluation, this should have no significant impact on performance.

As an exercise, you could create a procedure variant that use a passed cmp() proc instead of the >
operator. That should not be difficult, but the use of a passed cmp() procedure makes the sorting
slower, as that proc can not be inlined.

Iterative merge sort variant with internal loop

For our iterative quicksort() algorithm, we created a variant which popped only one interval onto
the stack, and continued directly with processing of the other interval. We did that to avoid a very
large stack size for worst-case data. It is easy to do the same for our iterative merge sort procedure.
For the case where an actual sort action is required, and not just a merge, we can directly continue
with one of the two intervals in an internal while loop. You may try it yourself, before looking at
the following code:

proc mergeSort[T](s: var openArray[T]; ascending = true) =
 type R = tuple[a, b: int]

 var sp: int = -1
 var stack: array[64, R]

 template add(r: R) =
 inc(sp)
 stack[sp] = r

 template pop: R =
 let res = stack[sp]
 dec(sp)
 res

 if s.len == 0: return
 var sh = newSeq[T](s.len div 2)

333

 add((s.low, s.high))
 while sp >= 0:
 var (a, b) = pop
 var m = (a + b) div 2
 if a <= b: # regular interval
 assert(b - a >= 0)
 while true:
 if b - a == 0:
 break
 elif b - a == 1:
 if ascending and s[a] > s[b] or not ascending and s[a] < s[b]:
 swap(s[a], s[b])
 break
 else:
 assert (m >= a and m < b and b - a > 1)
 add((b, a)) # merge only
 add((m + 1, b)) # sort
 #add((a, m)) # sort
 b = m
 m = (a + b) div 2
 else: # merge only
 swap(a, b) # we have to swap, because we pushed the interval to merge inverted
onto stack!
 var ls = b + 1
 var lh = b - m - 1
 var lm = m
 for i in 0 .. lh:
 sh[i] = s[m + 1 + i]
 while ls > a and lh >= 0:
 dec(ls)
 if lm < a:
 while lh >= 0:
 s[ls] = sh[lh]
 dec(ls); dec(lh)
 else:
 if sh[lh] > s[lm] == ascending:
 s[ls] = sh[lh]
 dec(lh)
 else:
 s[ls] = s[lm]
 dec(lm)

This version has no actual benefit, but it is always good to know that it exists. The careful reader
may wonder whether our selected size for the stack array of 64 elements is really large enough, as
we pushed always three items at once on the stack. Indeed, theoretically the stack variable should
have three or at least two times that used size of 64. But 2^64 bytes is the theoretical maximum
memory size of a 64-bit computer, from which the available devices are far removed. Typical desk
top computers have no more than 64 GB RAM, which is only 2^36 bytes. And current CPUs have typ
ically only a 40-bit width data bus, so that only 2^40 bytes can be physically addressed (1 TB). As a
conclusion, we might indeed increase the stack variable size to 80 elements to be on the safe side. At

334

the end of this section, there’s an interesting observation: When we compile our test program from
above, where we use the sort() function of Nim’s standard library as well, with the option -d:lto,
the performance of that sort() function doubles, and is close to our own merge sort. So with the gcc
13.2.1 backend and LTO, the C compiler seems to be able to inline the cmp() function used by Nim’s
standard library’s sort() proc.

[1] Unfortunately, we have used the term STACK in two different ways in this section: For our recursive sorting proc, we are talk
ing about the CPU stack, which is used to pass proc parameters and store proc local data — and which can overflow. In our nonre
cursive proc, we use a variable, which is also called stack, but that is only an ordinary buffer variable. The term stack is common
for such buffers, where we can push() and pop() values.

[2] From introductory courses to Computer Science, people generally remember QuickSort best, just because of its name and its
good performance, as long as we ignore the worst-case scenario and the not stable sorting order.

[3] Well to ensure this, we may have to check the actual merge condition, do we have to test for < or <=. Currently, we do not really
care about that, but it is clear and well-known that merge sort can be stable.

335

Reading CSV files and other data
We discuss the reading of CSV files (comma-separated values) and other data files in Part VI of the
book, labeled "Advanced Nim". Not because it is difficult, but because we compare the performance
of various processing techniques, including RegEx and PEG matching, and finally show how we can
distribute the parsing work across multiple CPU cores. The PEG (Parsing-Expression-Grammar) is
introduced in Part V of the book, which discusses some interesting external packages. If you are
interested in CSV reading and parsing, you may already read section Parsing data files (in parallel)
now; just skip the sections about PEGs and parallel parsing.

336

Some small exercises

Removing adjacent duplicates
Removing duplicates from containers is a common programming task. When we know in advance,
that we do not want to store the same data value more than once, and that the order of the stored
values does not matter, then we may consider using some form of sets or hash sets. If insertion
order matters, then the standard library may provide some form of ordered or sorted sets for us.
But for this exercise, we will assume that we have values stored in a sequence, and we want to
remove the adjacent duplicates. A typical use case for that is when we have stored a path of 2D or
3D positions. When we insert, move or delete a position value, it may occur that we get duplicates,
with zero spatial distance between the two neighbored positions. In that case, it is generally desired
to remove the duplicate. A similar use case is a text file stored as a sequence of words, where adja
cent duplicated words may indicate a typo. To keep our example short and simple, we will use as
data type a seq[int]. Using other data types or creating a generic procedure should be not difficult
for the reader.

[1, 4, 4, 2, 5, 5, 5, 1] ==> [1, 4, 2, 5, 1]

Before you continue looking at our provided example code, you may think about this task yourself,
perhaps take a piece of paper and a pencil and sketch the algorithm. It is really not difficult, maybe
too easy for you, when you have carefully studied the preceding sections of the book, or when you
have already some programming experience. When we create a procedure for this task, we have to
first decide if the procedure should work in-place on the passed seq or if it should return the
processed result and leave the original data unchanged. Often returning a copy is easier, but for
our task, the common use case seems to be more of an algorithm that works in place. So we will
provide the in-place algorithm here and leave the version returning a processed result as an
optional exercise for the reader. Note that returning a processed copy needs to allocate the seq for
the result, and potentially later the memory management system has to free the result data again,
which is some additional effort. So we may guess that the in-place proc is faster, as long as we do
not really need the copy. When needed, we can use the dup() macro of the sᴜɢᴀʀ module to use our
in-place procedure as one, that works on a copy and returns this copy, without modifying the input.

The basic idea of our algorithm is, that we iterate through the whole seq and pick an element at the
current location only if it is not identical to the preceding element. For the case that our seq is
empty or contains only one single element, we have obviously nothing to do and can return imme
diately. So our code may look like:

proc deTwin(s: var seq[int]) =
 if s.len < 2:
 return
 var i, d: int # d is the position where we copy the elements that we want to keep
 while i < s.high:
 inc(i)
 if s[d] != s[i]:
 inc(d)

337

 s[d] = s[i]
 s.setLen(d + 1)

var h = @[1, 4, 4, 2, 5, 5, 5, 1]
detwin(h)
echo h # [1, 4, 2, 5, 1]

We use two positions, the actual position in the input data denoted as i, and the destination posi
tion d. Both start with the default value of zero. To keep full control over the iterating process, we
do not use a for loop in this case, but a plain while loop for the index of the actual position. In the
while loop body, we compare the value at the current index position s[i] with the value that we
picked before, which is s[d]. If the values are not identical, we pick the current value s[i], other
wise, we just skip it. By picking a value, we mean that we copy it from index position i to index
position d. Of course, this can only work, when d is never larger than i, as otherwise, we would
destroy our still unprocessed input data at positions s[i + 1]. The loop body is really simple, but
getting the indices right needs some care: We have to ensure that i and d start at the right positions,
that we increase i and d when necessary, and that the loop terminates when all input data is
processed. Obviously, the first comparison should compare s[d == 0] with s[i == 1]. So d and i can
both start with the initial value of zero, with i being increased each time at the start of the loop. The
destination position d starts with zero, as we always accept the first element, and d increases only
when we have accepted one more element. The loop is executed as long as i is less than s.high.
Finally, we have to set the new length of s to d + 1. The value d + 1 results from the fact, that we
always accept the first element, and for each more accepted element d is increased, so the total
number of accepted elements is d + 1. The careful reader may wonder, if the first two lines of the
procedure, where we test for the trivial case, are really necessary, or if these cases can be covered
by our while loop already. Well, generally it is a good idea to avoid unnecessary tests for trivial
cases when possible, as those tests may increase the code size and marginally affect performance.
But in this case, we have two trivial cases — empty seq and seq with only one element, which can
not be covered well with a loop with only one simple termination condition. And of course, we
should try to simplify the condition of the while loop as much as possible, avoiding additional
boolean conditions with and or or operators to achieve the best performance. Further, you may
wonder if our picking strategy is really optimal, as, for a seq with no adjacent duplicates, we still
copy all the elements. Yes indeed, but for the general case, with duplicates, we have to do the copy,
and such a copy operation is really fast. Additional tests with an if condition could impact perfor
mance. Maybe we could have used two loops in the procedure body, one that just accepts elements
without a copy operation, as long as no duplicates are found, and a second loop like the one from
above, which then has to do copy operations to move the elements to the front. You may try that
yourself, and measure the performance for various input data.

Array difference
The difference of two arrays or sequences A and B is the collection (A - B) of values that are contained
in A but not in B.

[1, 2, 5, 2, 9, 7, 0] - [7, 4, 1, 10, 7] == [2, 5, 2, 9, 0]

338

Actually, such a difference of array or seq containers isn’t frequently needed, which may be why the
Nim standard library doesn’t provide this function.[1] Building such kinds of differences is much
easier and faster with sets or hash sets, so whenever possible, we should use these containers from
the beginning when we know in advance that we have to build differences. But sometimes we just
have arrays or sequences, and then we may notice that we require the difference. When the order
of the elements does not matter, we may just convert both containers to sets or hash sets, build the
set difference, and then possibly convert that difference back to a seq. But there are use cases,
where we really want to work with array or seq containers, maybe because we want to iterate over
the container, want that values can be contained multiple times, or always keep the insertion order.

So let’s create an algorithm to do this task. A naive strategy would be to iterate over container A and
delete each element that is also contained in B. But that would be slow, and may not work at all, as
deleting elements while we iterate over the seq does generally not work at all. We will create a proc
called `-` which can be used as an operator to build the difference of two arrays or sequences and
which returns the difference as a new seq, and a `-=` procedure, which removes the elements of b
from a in place and is also used as an operator.

import std/sets

proc `-`*[T](a, b: openArray[T]): seq[T] =
 let s = b.toHashSet
 result = newSeq[T](a.len)
 var i = 0
 for el in a:
 if el notin s:
 result[i] = el
 inc(i)
 result.setLen(i)

proc `-=`*[T](a: var seq[T]; b: openArray[T]) =
 let s = b.toHashSet
 var i, j: int # both start with default value zero
 while i < a.len:
 if a[i] notin s:
 a[j] = a[i]
 inc(j)
 inc(i)
 a.setLen(j)

proc main =
 let a = [1, 2, 5, 2, 9, 7, 0]
 let b = [7, 4, 1, 10, 7]
 echo a - b # @[2, 5, 2, 9, 0]
 echo b - a # @[4, 10]

 var x = @a
 x -= b
 echo x # @[2, 5, 2, 9, 0]

339

main()

To make the lookup for elements contained in b fast, we convert b to a hash set, for which lookup
time is in principle independent of the size of the container, which is known as O(1) in Big O nota
tion. We make the two procedures generic and use the data type open array for the two passed argu
ments so that our procs can be used for arrays as well as for sequences. An exception is the first
var parameter of the `-=` proc, which must be a seq, as arrays have a fixed size and cannot shrink.
For the `-` proc, we pre-allocate the returned result variable with a size of a.len, so that we can
avoid re-allocations. Then we iterate over a with a for loop, copying the current element to the
result seq if its value is not contained in the hash set. We use the subscript operator [] to copy the
picked elements at position i in the result seq, which is faster than starting with an empty result
seq and appending the picked elements. Since we initialize the result seq with the size of container
a, we must finally call result.setLen(i) to shrink the size to the number of selected elements. The
presented `-=` procedure is a bit more complicated, as we process seq a in place. We use an
approach similar to what we did in the deTwin() procedure in the previous section, that is, we use
two index positions i and j, and copy elements from the current position i to position j if the value
is not contained in the lookup set. Finally, we need to set the size of seq a to match the number of
selected elements.

While the two presented procedures can be quite useful in some cases, they are primarily pre
sented as an exercise here. As a smart user of the Nim forum showed us, we can get a very similar
behavior by use of the filter() proc in combination with the => operator of the sᴜɢᴀʀ module:

import std/[sequtils, sets, sugar]

let a = [1, 2, 5, 2, 9, 7, 0]
let b = [7, 4, 1, 10, 7]

let bSet = b.toHashSet()
echo a.filter((x) => x notin bSet)

References:

• https://forum.nim-lang.org/t/7753

Binary search
Perhaps you can recall that, some decades ago, your parents used phone books and dictionaries
made of paper sheets, filled with printed text sorted alphabetically? Well, that alphabetical order
ing was done with a purpose: When searching for a name or a word, we could just open the book
somewhere in the middle. If the name or word that we searched for was ordered alphabetically
before the content of the current page, then we continued searching for that term in the lower half,
otherwise in the upper half. That procedure continued until the desired entry was found or until it
became clear it was not available. This type of search in an ordered data set is called binary search,
half-interval search, logarithmic search, or binary chop. As each repetition halves the remaining
data set, it is much faster than a linear search in unordered data.[2]

340

https://forum.nim-lang.org/t/7753

To use this type of search strategy on a computer, we store our sorted data in an array or a seq. Cre
ating a procedure to do the search is basically very easy, but we have to care for some details:

1 2 3 4 5 6 7 8 # search for v == 7
a p b
a p b
proc binarySearch(s: openArray[int]; v: int): int =
 var a, b, p: int
 a = s.low
 b = s.high
 while a <= b:
 p = (a + b) div 2
 if v > s[p]: # continue search in the upper partition
 a = p + 1
 elif v < s[p]: # continue search in the lower partition
 b = p - 1
 else: # we have a match
 return p
 return -1 # indicate no match

var d = [1, 3, 5, 7, 11, 13]

for i in 0 .. 15:
 let res = binarySearch(d, i)
 if res >= 0:
 echo "Found value ", i, " at position ", res

To keep our example code as simple as possible, we do our search on an ordered array or seq of
integers. The value we are searching for is passed as the second integer argument to the proc called
binarySearch(). The first three lines of the example program show some example data consisting of
the ordered numbers 1 .. 8. Here we use a consecutive sequence of numbers, but the specific num
bers are completely arbitrary, as long as the sequence is sorted in ascending order. Let a be the
index of the lowest number in the seq, and b be the index of the largest number. If the number we
search for is contained in the seq, then that number must be located at an index position greater or
equal to a and an index position less or equal to the index position b. For the index position p near
the center, the obvious choice is (a + b) div 2. For our example, we assume that we search for a
value of 7. The first index position of p is (0 + 7) div 2, which is 3 containing value 4, which is
lower than the searched value 7. So we would have to continue our search in the upper half, setting
the new lower bound of the range to search to p or p+1. The upper boundary remains unchanged
for this case, and we continue with a new value p = (a + b) div 2.

The program code follows this strategy straightaway. We start with a == s.low and b == s.high, and
the loop continues as long as a <= b. Note, that we use as new boundaries not the value of p, but p +
1, if we continue with the upper half, and p - 1 when we continue with the lower half of our data.
We can use this offset of one, as we have already investigated position p. This offset of one does not
only speed up things, as the new interval is smaller by one this way, but actually guarantees that
the interval size permanently shrinks and the algorithm terminates always. Without that offset, in
the case where b == (a+1), we would get a value p == (a + a + 1) div 2, which equals a, and we

341

might then set the new a to p, which would be the same as the previous a. So the range would not
always shrink, and our algorithm would not really terminate for some data values. You may test
that yourself when you remove the offset — the algorithm would not terminate for some data.
Finally, try making the procedure generic and then possibly search for a word in an ordered list of
words.

▼ Click to see a possible solution

proc binarySearch[T](s: openArray[T]; v: T): int =
 var a, b, p: int
 a = s.low
 b = s.high
 while a <= b:
 p = (a + b) div 2
 if v > s[p]: # continue search in the upper partition
 a = p + 1
 elif v < s[p]: # continue search in the lower partition
 b = p - 1
 else: # we have a match
 return p
 return -1 # indicate no match

var d = ["Algol", "Basic", "C", "D", "Elexir", "Erlang", "F#", "Haskell"] # sorted!

for i in ["Oberon", "Nim", "Basic", "Ada", "Erlang"]:
 let res = binarySearch(d, i)
 if res >= 0:
 echo "Found value ", i, " at position ", res

References

• https://en.wikipedia.org/wiki/Binary_search_algorithm

Integer to string conversion
Have you ever asked yourself what actually happens when we print the value of an integer variable
on the screen, perhaps using the echo() procedure? Before echo() can print the value, the integer
has to be converted to a text string somehow. Some people may think that this conversion is trivial.
However, as we already know, all data in our computers is stored in abstract binary form, so we
know better. But could there be some magic available to do this task? Well, when we regard the
existence of C libs or the Nim standard library as that magic solution, then the answer is yes. But in
this section, we will assume that we will not use a C library or a function of the Nim standard
library for the conversion of integers to strings, but do it ourselves. Indeed, this conversion task is
an interesting exercise, from which we can learn a lot, much more than from using a gaming lib
and moving some sprites over the screen. Even if you already know how to do it, you might learn
something new. We will start by asking how we can convert an int i with a numeric value 0 <= i
<= 9 to a single character digit matching this value. Then, we will present a first procedure to con
vert larger integers to strings. After that, we will try to improve the initial solution, make the proce
dure generic, and investigate potential issues that might occur on restricted hardware like small

342

https://en.wikipedia.org/wiki/Binary_search_algorithm

microcontrollers and embedded systems.

Since there’s no magic involved, let’s recall how to print the characters 0 .. 9: Well, first, we have
to remember that the 256 ASCII characters map directly to the integers 0 .. 255, e.g. the character A
is mapped to the integer value 65. We can use the conversion functions int() or ord(), and char() to
convert between the two data types, where these conversion functions do no real work at all, the
content of the variable is just interpreted as a different type. In other words, a plain cast would
achieve the same result:

var i: int8 = 65
echo char(i)
echo cast[char](i)
var c: char = 'A'
echo ord(c)
echo int8(c)
echo cast[int8](c)

A
A
65
65
65

Of course, the same conversions work for all 256 ASCII characters, which include the decimal digits
'0' .. '9'. So one way to print the 10 digits is

var startPos = int('0')
var i: int
while i < 10:
 stdout.write(char(startPos + i))
 inc(i)
stdout.write('\n')

This works because the 10 decimal digits follow each other in the ASCII table. As we may not
remember the position of the digit '0' in that table, we get the position by int('0'). Note that int('0')
and ord('0') are basically the same here; we don’t have a strong preference and use both inter
changeably. The ord() function is generic, always returns an int, and works for ordinal types, enums
with holes, and distinct ordinal types, while the int() functions have the advantage of being avail
able in different sizes, like int8(), and also for unsigned results. We strongly hope that you under
stand the difference between the int value 0 and the decimal character digit '0' — if not, you may
read again the section about characters in Part II of the book, see Characters.

With these introductions, you may already have an idea of how we can get the decimal digit for the
lowest decimal place of an arbitrary integer value v: char(v mod 10 + ord('0')). This works,
because v mod 10 is the numeric value of the lowest decimal place, that is a value between 0 and 9,
and when we add ord('0') we get the corresponding position in the ASCII table. Finally, we use

343

char() to convert that numeric value to a char data type, which is only a plain cast, the compiler
reinterprets the bit pattern as a character. So we are mostly done. To get the following digits, we
just divide the initial integer value by ten to move all one position to the right, and then we con
tinue with the initial step. We use integer division, ignoring the remainder. We repeat that until the
division by ten gives zero, then we are done. That division by ten may still be confusing for
you — we know that in the decimal notation, a division by ten is a shift right, but why does that
work for a number that is stored in binary form in the computer memory? Indeed, it is a bit confus
ing. The division by ten works, because it is a purely mathematical, abstract division operation,
fully independent of the actual representation of the number. Imagine you have a two-digit number
in the range 00 .. 99. Now divide that number by ten. Independent of how the number is stored,
we will get a new number in the range 0 .. 9, and we can convert that value to a digit with the
method shown above.

So following this strategy, we may get a first intToStr() procedure that may look like this one:

proc intToStr(a: int): string =
 var v = a
 while true:
 result.add(char(v mod 10 + ord('0')))
 v = v div 10
 if v == 0:
 break

echo intToStr(0)
echo intToStr(1234)
echo intToStr(12345678901234.int)
echo intToStr(int.high)

As output, we would get

0
4321
43210987654321
7085774586302733229

Not too bad, but unfortunately, we get the digits in reverse order. And for negative numbers, it
would not work yet. But that can be easily fixed. What the above code does should be obvious from
the discussion before: We copy the passed integer argument a into a local variable v of the same
data type so that we can modify it, and in the while loop body, we extract the lowest digit and then
divide the value by ten to shift it down to the right. We have to use a while true: loop with a break
statement, because we need at least one loop execution to get at least one digit, but Nim does not
support repeat-until loops as found in languages like Pascal. In the loop body, we apply the dis
cussed operation to get the digit of the lowest place, then divide the actual value by ten, and con
tinue, as long as that value is not already zero. When it is zero, we can leave the loop, as we do not
intend to print leading zeros.

It is straightforward to create a proc that prints the digits in the correct order and can handle nega

344

tive values:

proc intToStr(a: int): string =
 if a == int.low:
 return "-9223372036854775808"
 var v = a.abs
 var i: int
 var res: array[20, char]
 while true:
 res[i] = char(v mod 10 + ord('0'))
 v = v div 10
 inc(i)
 if v == 0:
 break
 if a < 0:
 res[i] = '-'
 inc(i)
 result = newString(i)
 let j = i - 1
 while i > 0:
 dec(i)
 result[j - i] = res[i]

echo intToStr(0)
echo intToStr(1234)
echo intToStr(int.high)
echo intToStr(-0)
echo intToStr(-1234)
echo intToStr(int.low + 1)
echo intToStr(int.low)

We use an array of characters for temporarily storing the decimal places, and finally, copy the digits
into the result string. We pre-allocate the string with the correct size and use the subscript opera
tor [] instead of add() to insert the digits for performance reasons. Initially, we create a copy v with
a positive sign of the passed integer argument a, and when the argument was initially negative,
then we add an additional minus sign to the temporary array, which is finally also copied to the
result string. All this is not difficult, we have only to care that we get all the indices right. A minor
issue is that when the passed integer argument has the value low(int), applying abs() would gener
ate an overflow error, see section Binary numbers in Part II of the book if you forgot it. We fix that
by returning just the correct string for that unique negative value for now.

The above procedure isn’t bad, but perhaps we can improve it. Can we avoid the temporary array?
The actual difficulty is that we don’t know how many total digits the integer argument will require
in advance, making it impossible to position all the digits correctly in the result string. A possible
solution is to use a function that gives us the number of decimal places of an integer number.
Indeed, we have such a function available, it is math.log10(). Remember, log10(1) is zero, log10(10)
is one, log10(100) is two, and so on. So basically what we need. The logarithm function isn’t particu
larly slow on modern desktop computers, so it should be acceptable to use it. At the end of this sec
tion, we will consider how we may replace it for tiny microcontrollers which do not provide an

345

FPU. The improved intToStr() procedure may look like this one:

import std/math

proc intToStr(a: int): string =
 if a == int.low:
 return "-9223372036854775808"
 var v = a.abs
 var i, j: int
 if v > 0:
 i = math.log10(v.float).int
 if a < 0:
 j = 1
 inc(i)
 result = newString(i + 1)
 result[0] = '-'
 while i >= j:
 result[i] = char(v mod 10 + ord('0'))
 v = v div 10
 dec(i)

This proc is very similar to the previous one. We call log10() to get a measure for the number of
needed digits. Remember that the logarithm is undefined for the argument value zero, we use the
default value i == 0 for that. Actually, in all cases i + 1 is the total number of digits that we have to
generate — in the case where we have to generate a minus sign, we increase i by one. We pre-allo
cate a result string with i + 1 positions and put a minus sign at position zero, which is overwritten
in the while loop when the argument was not negative. As we know the total number of digits of
our number, we can use the variable i to put the digits at the correct positions in the while loop.
The careful reader may wonder if log10(v.float).int will definitely work for all integer arguments
of v, or if we should better round the argument like log10(v.float + 0.5).int. Indeed, with that
rounding, we should be safe.

The next task is to avoid the initial test for int.low. We should really remove that special case as we
prepare to make the procedure generic later. A possible solution is to work with uint64 instead of
int in the proc body, as in

import std/math

proc intToStr(a: int): string =
 var v: uint64
 if a == int.low:
 v = uint64(-(a + 1)) + 1
 elif a < 0:
 v = uint64(-a)
 else:
 v = uint64(a)
 var i, j: int
 if v > 0:
 i = math.log10(v.float + 0.5).int

346

 if a < 0:
 j = 1
 inc(i)
 result = newString(i + 1)
 result[0] = '-'
 while i >= j:
 result[i] = char(v mod 10 + ord('0'))
 v = v div 10
 dec(i)

When we add 1 to int.low, then we can invert the sign, and convert the value to unit64. We have to
add 1 again to the uint64 value to get the initial sequence of digits. And now we can make the proce
dure generic:

import std/math

proc intToStr(a: SomeInteger): string =
 var v: uint64
 when a is SomeSignedInt:
 if int(a) == int.low:
 v = uint64(-(a + 1)) + 1
 elif a < 0:
 v = uint64(-a)
 else:
 v = uint64(a)
 else:
 v = uint64(a)
 var i, j: int
 if v > 0:
 i = math.log10(v.float + 0.5).int
 when a is SomeSignedInt:
 if a < 0:
 j = 1
 inc(i)
 result = newString(i + 1)
 result[0] = '-'
 while i >= j:
 result[i] = char(v mod 10 + ord('0'))
 v = v div 10
 dec(i)

echo intToStr(0)
echo intToStr(1234)
echo intToStr(int.high)
echo intToStr(-0)
echo intToStr(-1234)
echo intToStr(int.low)

echo intToStr(0.uint8)
echo intToStr(123.uint8)

347

echo intToStr(uint8.high)

echo intToStr(0.uint64)
echo intToStr(123.uint64)
echo intToStr(uint64.high)

echo intToStr(0.uint)
echo intToStr(123.uint)
echo intToStr(uint.high)

We use as parameter type SomeInteger, which allows signed and unsigned ints of all byte sizes, and
in the proc we test with is SomeSignedInt: if we have to care for the sign and in case of value
int.low for overflow. The advantage of this proc is that it works for all integer types, both signed
and unsigned. But one disadvantage is that the data type uint64 is always used, which may not be
available on microcontroller CPUs. Let’s see how a procedure for only unsigned types might look:

import std/math

proc intToStr(a: SomeUnsignedInt): string =
 var i: int
 var v = a
 if v > 0:
 i = math.log10(v.float + 0.5).int
 result = newString(i + 1)
 while i >= 0:
 result[i] = char(v mod 10 + ord('0'))
 v = v div 10
 dec(i)

echo intToStr(0.uint8)
echo intToStr(123.uint8)
echo intToStr(uint8.high)

echo intToStr(0.uint64)
echo intToStr(123.uint64)
echo intToStr(uint64.high)

echo intToStr(0.uint)
echo intToStr(123.uint)
echo intToStr(uint.high)

That one is really simple and short, so maybe it would indeed make sense to use this one for the
unsigned types. And we do not need the uint64 type, so on a system with no native 8-byte integers,
that procedure should work fine.

Remember that whenever we use generic procedures for the first time with a new argument
type, then a new instance of the proc customized for that data type, is created. That is, when
we call strToInt() at least two times with an int32 and an int8 data type like intToStr(myInt32)

348

and intToStr(myInt8), then we get already two different instances. Therefore, the use of
generic procedures can increase the code size of our final executable. To avoid that, we may
use intToStr(myInt8.int32) instead, which would just call the instance for the int32 argument
again.

All the previous examples have used log10() to determine the number of digits for the passed argu
ment value. On microcontrollers, log10() may not be available at all or can be very slow. So, let’s
investigate, at the end of this section, how we can replace it. The basic idea is that we repeatedly
divide the argument by ten, until we get the result of zero, counting the number of needed divi
sions. An equivalent approach is to start with a variable with a value of one and multiply by ten
until the result is larger than our function argument. As division is generally slower than multipli
cation and a native div operation might not be available at all on microcontrollers, we will try to
use multiply operations. So we may start with a procedure like

proc digits0(i: int): int =
 assert i >= 0
 result = 1
 var d = 10
 while d <= i:
 d *= 10
 inc(result)

Can you see the problem? What will happen when we pass int.high as an argument?

So a working proc is this:

proc digits(a: SomeInteger): int =
 assert a >= 0
 var i: uint64 = a.uint64
 result = 1
 when sizeof(a) == 8:
 const c = 10
 if i >= c:
 i = i div c
 result = 2
 var d: typeof(i) = 10
 while d <= i:
 d *= 10
 inc(result)

We do the math with an uint64 type in the proc. For the case that the argument is an 8-byte type, we
may get an overflow in the while loop, which we prevent by doing one division before the loop
already. Actually, for improved performance, instead of a division by ten, we may do a division by a
larger power of ten, and fix the start value for the result accordingly. One disadvantage of that
generic procedure, again, is that a uint64 type is used for the math, which is fine on a desktop PC,
but may work badly on restricted hardware. So this variant seems to be a better solution:

349

proc digits(a: SomeInteger): int8 =
 assert a >= 0
 var i = a
 result = 1
 if i >= 10:
 i = i div 10
 result = 2
 var d: typeof(i) = 10
 while d <= i:
 d *= 10
 inc(result)

echo digits(0)
echo digits(9)
echo digits(10)
echo digits(99)
echo digits(int.high)

echo digits(0.int8)
echo digits(int8.high)

echo digits(0.uint8)
echo digits(uint8.high)

echo digits(0.uint)
echo digits(uint.high)

Here, we do a single div operation if the argument is larger than 9, but do all the math with the
same type as the argument type. The div operation may still be slow on a microcontroller, but our
intToStr() procedure has also used div operations. Indeed, doing intToStr() conversions on a tiny 8-
bit microcontroller is not really a good idea.

For determining the number of digits of integer numbers, you will find many more solutions on the
Internet. Sometimes, this operation is referred to as log10() for integer numbers. Some functions try
to use the logarithm with base 2, which is related to finding the highest set bit of a number, some
other functions use tabular data or a sequence of if or case statements. As the performance of that
functions depends on the actual hardware, there exists not really the best solution for all cases.

For the intToStr() function, you should also find very good solutions in Nim’s standard library. Note
that it was not our goal in this section to present a perfect solution; the idea was more to show you
how such a task can be solved in principle, how we can improve or modify solutions, and how we
can use Nim’s generics to get one function for multiple data types. Note that the presented proce
dures are only minimally tested and have been tested only on a 64-bit desktop OS. So they may not
work on systems where Nim’s int type is 32 bit, or for microcontrollers and embedded systems.
However, you have learned enough now to be able to fix it for these cases.

As possible exercises for the reader, we suggest creating a similar procedure called strToInt() that
converts a numeric string to an integer number or converts between strings and float numbers.
The first one is easy, you would build the int value by continuously multiplying the digit value with

350

its correct power of ten, matching its position in the string. The float conversion is more difficult,
in one weekend you may get some working code, but perfect solutions like the ryu or dragonbox
algorithm are very complicated.

[1] Ruby provides such an operator: https://ruby-doc.org/core-3.0.0/Array.html#method-i-2D

[2] Well, for a small data set, maybe up to a few dozen entries, a linear search is typically the fastest still. We have observed this
behavior already for our various sorting strategies — logarithmic, interval halving strategies pay off only for not too tiny data sets.

351

https://ruby-doc.org/core-3.0.0/Array.html#method-i-2D

Minimum spanning tree

As one more example, we will present a few different ways to find a minimum spanning tree (MST)
of a set of points in the plane. An MST is a graph that connects a set of points (in 2D) by minimizing
the total path length. Instead of the Euclidean distance of the points to each other, other cost func
tions can be used as well. Typical applications for the use of MSTs are all sorts of connection prob
lems, e.g., connecting electrical signals on a printed circuit board (PCB) or a schematic, or connect
ing the electric power supply, water supply, or Internet cable between a set of buildings. Related but
different from the MST problem is the traveling salesman problem, which is visiting a number of
cities with the shortest possible path, which is typically addressed by the famous Dijkstra algorithm
(https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm). The MST problem may look a bit exotic. At
first, you may get the feeling that studying this section of the book may not have that much benefit
for you. Well, if this section is too boring for you, just skip it; you will not miss any important foun
dations. We decided to present the MST problem here for various reasons: The problem is easy, but
not too simple, so you should be able to understand it quickly in full detail. By using two popular
strategies for solving the problem, the Prim’s algorithm and Kruskal’s algorithm, you learn how
problems can be solved by different strategies, each with its own drawbacks and benefits, including
the behaviour of performance for large data sets. And both the presented algorithms allow you to
start with a simple solution and then improve and refine it through the use of advanced data struc
tures (Delaunay triangulation, heap-queue, and the disjoint set data structure) to improve the per
formance or to simplify the code.

To allow a visual inspection of the generated trees, we will use the GTK GUI and the Cairo library to
draw the final path to the computer screen. If you have already some experience with other GUI
toolkits, it should be easily possible for you to replace GTK and Cairo with other libraries that you
may prefer.

For the initial set of points in the 2D plane that we have to connect by an MST, we need to consider
two cases. A case from real life is the connection of cities by streets, where each city has only a
small set of direct neighbors. The other case is a set of points where we can, in principle, connect

352

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

each point to every other point, like points drawn on a sheet of paper or the electric signal and
power supply paths on a PCB. The latter case is in principle O(n^2) because for a set of n points,
there are (n-1) other points for possible direct connections. For our examples, we actually use this
last case. The reason is that we can use as input data a plain set of random points and that it is more
demanding due to a large number of possible connections. Reducing this general case to input data
with only a limited set of direct connections is not hard.

To minimize the connection graph of n points, we need a cost function for each possible connection.
In our simple case of n points in the plane, this is just the distance between the points, and the solu
tion to this special case is called Euclidean minimum spanning tree, see https://en.wikipedia.org/wiki/
Euclidean_minimum_spanning_tree. For real-world problems like street construction, the cost func
tion can be much more complex, as it can be necessary to avoid passing rivers, hills, and other bar
riers.

The Prim algorithm
Prim’s algorithm is a simple greedy algorithm that simply connects the closest unconnected point to
the existing tree. The process starts by selecting an arbitrary point of the input data set as the first
point of the tree, and then successively connects the nearest one from the other points, until all the
points are connected. You can find the formal description of the Prim algorithm at
https://en.wikipedia.org/wiki/Prim%27s_algorithm.

import std/[random, times]
from std/math import `^`, Tau

const
 WindowWidth = 1000
 WindowHeight = 1000
 BorderDist = 50
 DataRange = float(1000 - 2 * BorderDist)
 Points = 50

type
 Vertex = ref object
 x, y: float
 friend: Vertex
 dist: float = Inf

var
 vertices: seq[Vertex]
 forest: seq[Vertex]

proc init =
 randomize()
 for i in 0 ..< Points:
 vertices.add(Vertex(x: rand(DataRange) + BorderDist, y: rand(DataRange) +
BorderDist))

proc createForest =

353

https://en.wikipedia.org/wiki/Euclidean_minimum_spanning_tree
https://en.wikipedia.org/wiki/Euclidean_minimum_spanning_tree
https://en.wikipedia.org/wiki/Prim%27s_algorithm

 var last = vertices.pop() # arbitrary start point, assume that we have at least one
available
 while vertices.len > 0: # while there are more, still unconnected points available
 var nearest = Inf
 var pos = -1
 for p, v in vertices: # all vertices that are not yet part of the tree
 let d = (v.x - last.x) ^ 2 + (v.y - last.y) ^ 2 # squared distance
 if d < v.dist: # update distances, as last is a new point in tree
 v.dist = d
 v.friend = last
 if v.dist < nearest: # remember nearest point
 nearest = v.dist
 pos = p
 last = vertices[pos] # and pick nearest,
 forest.add(last) # add it to forest and
 vertices.del(pos) # delete it from the still unconnected vertex set

init()

let start = cpuTime()
createForest()
echo "elapsed: ", (cpuTime() - start) * 1e3, " ms"

import gintro/[gtk4, gobject, gio, cairo]

proc draw(d: DrawingArea; cr: cairo.Context; w, h: int) =
 cr.setSource(1, 1, 1)
 cr.paint # white
 cr.setSource(0, 0, 0)
 for i, el in forest:
 cr.setSource(0, 0, 0.7) # rgb
 cr.newPath
 cr.arc(el.x, el.y, 5, 0, math.Tau)
 cr.stroke
 cr.setSource(0, 0, 0, 1.2 - i.float / Points.float)
 cr.moveTo(el.x, el.y)
 cr.lineTo(el.friend.x, el.friend.y)
 cr.stroke

proc activate(app: gtk4.Application) =
 let window = newApplicationWindow(app)
 let d = newDrawingArea()
 d.setSizeRequest(WindowWidth, WindowHeight)
 d.setDrawFunc(draw)
 window.setChild(d)
 window.show

proc main =
 let app = newApplication("org.gtk.example")
 app.connect("activate", activate)
 let status = app.run

354

 quit(status)

main()

In the above program, we first define a Vertex data type, which is a point with x, and y coordinates
in the plane, which has additionally a friend, and a dist field. Friend denotes a direct neighbor, and
dist is the squared distance to this neighbor point. In all of our examples, we use squared distances,
as this avoids the square root calculations and gives the same results. We made Vertex a reference
type because our graph uses references to neighbors. Note that defining a value Vertex type like
above in this way would not work, as value types can not contain their own type as fields — that
would generate an infinite recursive type, like a box that contains itself, again and again. But we
could have actually used value types if we used for the friend field not a pointer, but an integer
index to the position in the sequence of input data. For some applications, using indices may have
advantages, but for our current task, the use of references seems to be OK. Note that we used in our
type definition a new feature introduced with Nim 2.0: Default values for object fields. With dist:
float = Inf we initialize that field to math.Inf, instead of the default zero value. In the init() proce
dure, we create a sequence of random input vertices. Then, in the createForest() procedure, we pick
an arbitrary starting vertex from the input data set and assign that value to a variable called last.
This value is the starting point of our MST for now, and later, variable last is always the point that
we just added to the tree. Whenever we add one more point to the tree, the tree grows, and the dis
tance to all the still unconnected points may shrink. So we have to update all the distances when
they have decreased. As point last is the one which actually grows the tree, we have to check only
the distances of all the still unconnected points to this last point, as the rest of the tree has not
changed.

While we still have unconnected points available, we iterate over them, check distances to last, and
update the dist and friend fields if the distance has become shorter. If the currently evaluated dis
tance is a minimum, we store that minimum value and the position of the vertex with the mini
mum distance in the sequence. When we have processed all vertices this way, the integer variable
pos is the index of the closest vertex. We add this vertex to the forest, remove it from the seq of still
unconnected vertices, and also store it in variable last for the next iteration. Note that we use the
del() procedure to delete values from the sequence. Del() performs the deletion by actually moving
the last value from the seq to the position to remove. This avoids expensive shifts of elements but
does not preserve the order of elements in the sequence. For our sequence of input data, this is OK,
as the data has no special order. You might be wondering why we named the container instance for
the collected points forest rather than tree. Well, in principle, the MST algorithm may generate a
set of distinct trees instead of only one, i.e., when there are barriers, such as the Great Wall of
China. The Kruskal algorithm, which we will discuss next, always starts with many distinct trees,
which may finally get connected if there are no barriers.

To display the result graphically, we have used the GTK toolkit together with the Cairo graphics
library. To actually run the program, you would need a computer with properly installed GTK and
Cairo. For Linux boxes, this should be typically no problem, for Windows or Mac, you may have to
install them, or you may use other toolkits or just delete the graphical output routines from the
above program. Additionally, you would need the Gintro Nim GTK bindings, which you may install
with the command nimble install gintro@#head if not already available. Then you can run our pro
gram with the command "nim r prim.nim" and should get a GUI window displaying the constructed
path. Our program contains a main() and an activate() proc, which are typically used in modern

355

GTK to launch an app. The activate() proc creates a window with a drawingarea widget in which we
can use Cairo functions to draw lines, circles, and much more. To do that, we need a draw() func
tion, which we set for our drawingarea widget, so it is called automatically when needed, e.g., for
program startup or when we resize or uncover the main window. In the draw() function, we iterate
over the vertices of our forest, draw small circles to indicate the vertex positions, and connect each
vertex in the forest with its friend. In case you are interested in more details about the use of the
GTK GUI and the Cairo library with Nim, you may consult the Nim GTK companion book. Or, just use
one of the more than 20 other GUI toolkits available for Nim, and modify the above program
accordingly.

When you compile the program with the -d:release option and run it, the displayed execution time
for createForest() should be around 15 microseconds for an input set of 50 points on modern hard
ware. That may look reasonably fast, but when you modify the program constant Points = 50 to
value 500, the execution time rises to 1 ms already. So the execution time increases nearly quadrati
cally with the size of the input data set. This was expected, as for each point that we added to the
existing tree, we iterate over the whole set of still unconnected points to update the distances and
select the closest one. For small point sets, this algorithm is indeed a good solution, but for really
large input data sets, we may hope for the existence of better solutions. At the end of this section,
we will present one. But first, we will present a different algorithm, which works on edges instead
of points.

Kruskal algorithm
The Kruskal algorithm works on edges. The strategy is to repeatedly find the shortest edges and add
them to the forest when they do not create cycles. Here, cycles mean connecting two vertices that
are already connected by a path. If A is already connected to B, and B is connected to C, then we
would skip connection A-C. This algorithm is again simple, but managing the information about
already existing connections is not that easy. Note that the construction process typically generates
many subtrees consisting of short edges first, which then later gets connected by longer edges. A
disadvantage of the Kruskal algorithm is that the number of edges is n^2 when there are no restric
tions for possible connections, as in our Euclidean example with plain points in a plane. You can
find a formal description of this algorithm at https://en.wikipedia.org/wiki/Kruskal%27s_algorithm.
We will start our explanation with a simple and stupid variant, where we store the information if a
vertex is already part of a subtree in an ordinary Nim bitset.

import std/[random, times, sets]
from std/math import `^`, Tau
from std/algorithm import sort, SortOrder

const
 WindowWidth = 1000
 WindowHeight = 1000
 BorderDist = 50
 DataRange = float(1000 - 2 * BorderDist)
 Points = 50

type
 Vertex = ref object

356

https://en.wikipedia.org/wiki/Kruskal%27s_algorithm

 x, y: float
 id: int16
 fs: ref set[int16]

type
 Edge = object
 v1, v2: Vertex

proc cmp(a, b: Edge): int =
 let d1 = (a.v1.x - a.v2.x) ^ 2 + (a.v1.y - a.v2.y) ^ 2
 let d2 = (b.v1.x - b.v2.x) ^ 2 + (b.v1.y - b.v2.y) ^ 2
 return -(d1 < d2).int + (d1 > d2).int

var
 vertices: seq[Vertex]
 edges: seq[Edge]
 forest: seq[Edge]

proc init =
 randomize()
 for i in 0 ..< Points:
 vertices.add(Vertex(x: rand(DataRange) + BorderDist, y: rand(DataRange) +
BorderDist, id: i.int16))

proc createForest =
 assert(vertices.len > 1)
 for v1 in vertices:
 for v2 in vertices:
 if cast[int](v1.addr) < cast[int](v2.addr):
 edges.add(Edge(v1: v1, v2: v2))
 edges.sort(cmp, SortOrder.Descending)
 while edges.len > 0:
 let e = edges.pop
 if e.v1.fs == nil and e.v2.fs == nil:
 let s = new set[int16]
 s[].incl(e.v1.id)
 s[].incl(e.v2.id)
 e.v1.fs = s
 e.v2.fs = s
 forest.add(e)
 elif e.v1.fs == nil or e.v2.fs == nil:
 if e.v1.fs == nil:
 e.v1.fs = e.v2.fs
 incl(e.v1.fs[], e.v1.id)
 else:
 e.v2.fs = e.v1.fs
 incl(e.v2.fs[], e.v2.id)
 forest.add(e)
 else:
 if e.v1.fs != e.v2.fs:
 e.v1.fs[] = e.v1.fs[] + e.v2.fs[]

357

 for v in vertices:
 if v.id in e.v1.fs[]:
 v.fs = e.v1.fs
 forest.add(e)

init()

let start = cpuTime()
createForest()
echo "elapsed: ", (cpuTime() - start) * 1e3, " ms"

import gintro/[gtk4, gobject, gio, cairo]

proc draw(d: DrawingArea; cr: cairo.Context; w, h: int) =
 cr.setSource(1, 1, 1)
 cr.paint # white
 for i, e in forest:
 cr.setSource(0, 0, 0.7) # rgb
 cr.newPath
 cr.arc(e.v1.x, e.v1.y, 5, 0, math.Tau)
 cr.stroke
 cr.newPath
 cr.arc(e.v2.x, e.v2.y, 5, 0, math.Tau)
 cr.stroke
 cr.setSource(0, 0, 0, 1.2 - i.float / Points.float)
 cr.moveTo(e.v1.x, e.v1.y)
 cr.lineTo(e.v2.x, e.v2.y)
 cr.stroke

proc activate(app: gtk4.Application) =
 let window = newApplicationWindow(app)
 let d = newDrawingArea()
 d.setSizeRequest(WindowWidth, WindowHeight)
 d.setDrawFunc(draw)
 window.setChild(d)
 window.present

proc main =
 let app = newApplication("org.gtk.example")
 app.connect("activate", activate)
 let status = app.run
 quit(status)

main()

We will not discuss the above code in much detail, as it is really ugly, and we will present a better
implementation soon. We have attached to the Vertex data type a 16-bit integer id and a set of these
ids. Our Edge data type has two fields of Vertex type each. The seq[Edge] variable stores all the ini
tial edges, and is filled in a nested loop iterating over the vertices. The test cast[int](v1.addr) <
cast[int](v2.addr) is necessary to avoid including each edge twice in the sequence of input edges.

358

Actually, as our vertices have unique ids, we could use the same test on the id fields instead on the
memory address in this case. As we intend to sort all our edges by length, we have to define a cmp()
proc for two edges, which we pass to the sort() proc. After we have sorted all the edges in descend
ing order, we remove the shortest one with pop() from the container and investigate, in which sets
the two vertices of that edge are contained. If at least one vertex of the edge still has a set reference
with a value of nil, then we join both vertices into one set. If both vertices are contained in different
sets, then we join the two sets and for all the vertices that have an id indicating membership in the
joined set, we set the fs ref to point to the joined set. All this is really slow, as we have to iterate
over all the edges and have to copy the sets. And the sets are large entities, consuming a lot of stor
age. When we study the Wikipedia article about the Kruskal algorithm, we learn that a much better
implementation for our needed set membership test exists. We will discuss that data type in the
next section.

Disjoint-set data structure
For the Kruskal algorithm, we have to test if edges are already part of other edge sets. So we need a
data structure, which is some form of a container of many sets, with functions to join sets (build the
union) and to test if elements are included in the same subset. As elements of the subsets, we can
use plain integers, which poses no restriction, as we can assign to each edge an integer id to identify
it, and we can use the integer ids as array indices to access edges in containers.

The Disjoint-set data structure offers a surprisingly simple and efficient way to present disjoint sets
of integer numbers. This data structure provides only three basic operations: Creating a set of n dis
joint subsets, where subset n contains initially only the value n. Testing whether two numbers i and
j belong to the same subset, and finally joining the subsets of two elements i and j. The data struc
ture for initially n subsets is actually only a plain array or seqquence of n integer numbers with
indices 0 .. n-1. When we create the data structure, the index position i is initialized with the value i
for all positions, that is s[i] == i for each i in the range 0 .. n-1. For the Disjoint-set data structure,
each subset is represented by a single integer, and it is said that two elements are in the same sub
set, when they have the same representing number. Initially, for each element i, s[i] == i. When
ever for an element the value stored at position i is i, that indicates that element i is in subset i. So
initially the container holds n disjoint subsets and each subset i contains the value i only. Joining
the subsets of the numbers i and j is very easy, we just can set s[i] = j or s[j] = i. Now s[i] and
s[j] are identical, indicating that i and j belong to the same subset. When we now want to join the
subsets of elements i and k, we just set s[i] = k or s[k] = i. This can continue until all the n subsets
are joined. For testing whether the subsets of numbers i and j are joined, we test the content at
array positions i and j in a recursive manner: If the value stored at index position i is identical to i,
then this is already the result. But if s[i] is k and k != i, then we have to investigate s[k] and so on,
until at some index position finally, the content is identical with the index position. Then this is the
final representing value, and when this final value is the same for two initial numbers, then the two
numbers belong to the same subset. Explaining this data structure is much more complicated than
the actual implementation. You can find a formal description at https://en.wikipedia.org/wiki/Dis
joint-set_data_structure, and we will sketch the very simple Nim implementation here:

import std/sequtils

type

359

https://en.wikipedia.org/wiki/Disjoint-set_data_structure
https://en.wikipedia.org/wiki/Disjoint-set_data_structure

 Subsets = object
 parent: seq[int]
 rank: seq[int]

proc init(s: var Subsets; n: int) =
 s.parent = toSeq(0 ..< n)
 s.rank = newSeq[int](n)

proc find(s: var Subsets; i: int): int =
 if s.parent[i] != i:
 s.parent[i] = find(s, s.parent[i])
 return s.parent[i]

proc union(s: var Subsets; i, j: int) =
 let i = find(s, i)
 let j = find(s, j)
 if i != j:
 if s.rank[i] < s.rank[j]:
 s.parent[i] = j
 elif s.rank[i] > s.rank[j]:
 s.parent[j] = i
 else:
 s.parent[i] = j
 inc(s.rank[j])

var s: Subsets
s.init(8)

s.union(3, 5)
echo s.find(3)
echo s.find(5)

The Subset data structure uses the parent field to store the n initial disjoint subsets. Additionally, a
rank field, also with n positions, is used, which controls the union() joining operations and improves
performance. The recursive find() proc does a path compression operation, which replaces a longer
recursive path with the direct result.

Kruskal with disjoint-set
Using the disjoint-set data structure drastically beautifies the Kruskal algorithm.

import std/[random, times, sequtils]
from std/math import `^`
from std/algorithm import sort, SortOrder

Subsets implementation

type
 Subsets = object

360

 parent: seq[int]
 rank: seq[int]

proc init(s: var Subsets; n: int) =
 s.parent = toSeq(0 ..< n)
 s.rank = newSeq[int](n)

proc find(s: var Subsets; i: int): int =
 if s.parent[i] != i:
 s.parent[i] = find(s, s.parent[i])
 return s.parent[i]

proc union(s: var Subsets; i, j: int) =
 let i = find(s, i)
 let j = find(s, j)
 if i != j:
 if s.rank[i] < s.rank[j]:
 s.parent[i] = j
 elif s.rank[i] > s.rank[j]:
 s.parent[j] = i
 else:
 s.parent[i] = j
 inc(s.rank[j])

###

const
 WindowWidth = 1000
 WindowHeight = 1000
 BorderDist = 50
 DataRange = float(1000 - 2 * BorderDist)
 Points = 50

type
 Vertex = ref object
 x, y: float
 id: int

type
 Edge = object
 v1, v2: Vertex

proc cmp(a, b: Edge): int =
 let d1 = (a.v1.x - a.v2.x) ^ 2 + (a.v1.y - a.v2.y) ^ 2
 let d2 = (b.v1.x - b.v2.x) ^ 2 + (b.v1.y - b.v2.y) ^ 2
 return -(d1 < d2).int + (d1 > d2).int

var
 vertices: seq[Vertex]
 edges: seq[Edge]
 forest: seq[Edge]

361

 s: Subsets

proc init =
 randomize()
 s.init(Points)
 for i in 0 ..< Points:
 vertices.add(Vertex(x: rand(DataRange) + BorderDist, y: rand(DataRange) +
BorderDist, id: i))

proc createForest =
 assert(vertices.len > 1)
 for v1 in vertices:
 for v2 in vertices:
 if cast[int](v1.addr) < cast[int](v2.addr):
 edges.add(Edge(v1: v1, v2: v2))
 edges.sort(cmp, SortOrder.Descending)
 while edges.len > 0:
 let e = edges.pop
 if s.find(e.v1.id) != s.find(e.v2.id):
 s.union(e.v1.id, e.v2.id)
 forest.add(e)

init()

let start = cpuTime()
createForest()
echo "elapsed: ", (cpuTime() - start) * 1e3, " ms"

import gintro/[gtk4, gobject, gio, cairo]

proc draw(d: DrawingArea; cr: cairo.Context; w, h: int) =
 cr.setSource(1, 1, 1)
 cr.paint # white background
 for i, e in forest:
 cr.setSource(0, 0, 0.7) # rgb
 cr.newPath
 cr.arc(e.v1.x, e.v1.y, 5, 0, math.Tau)
 cr.stroke
 cr.newPath
 cr.arc(e.v2.x, e.v2.y, 5, 0, math.Tau)
 cr.stroke
 cr.setSource(0, 0, 0, 1.2 - i.float / Points.float)
 cr.moveTo(e.v1.x, e.v1.y)
 cr.lineTo(e.v2.x, e.v2.y)
 cr.stroke

proc activate(app: gtk4.Application) =
 let window = newApplicationWindow(app)
 let d = newDrawingArea()
 d.setSizeRequest(WindowWidth, WindowHeight)
 d.setDrawFunc(draw)

362

 window.setChild(d)
 window.show

proc main =
 let app = newApplication("org.gtk.example")
 app.connect("activate", activate)
 let status = app.run
 quit(status)

main()

But when we compile and run it, we notice that it is still slow. The obvious reason for this is that we
consistently work with n^2 edges, which we first have to create, then sort, and finally, we iterate
over all of them. In the next section, we will use a Delaunay triangulation, to attach to each vertex a
small set of direct neighbors, and we will then use a set of edges that connect only direct neighbor
ing vertices.

Kruskal with disjoint-set and Delaunay triangulation
To create the Delaunay triangulation, we use the ᴄᴅᴛ2 module, a variant of the initial, textbook-
based ᴄᴅᴛ module, but with an API that is a bit more OOP-like, with support for subclassing of ver
tices. The ᴄᴅᴛ modules would work well for the following code, but for our last two examples, the
Prim algorithm based on Delaunay data, the ᴄᴅᴛ2 module is easier to use. So we use ᴄᴅᴛ2 here as
well. You may install it with the command nimble install https://github.com/stefansalewski/
cdt2.git. The ᴄᴅᴛ and ᴄᴅᴛ2 modules support very advanced operations, including fully dynamic
insertions and deletions, not only for data points but also for constraining edges. For our current
use case, a simpler variant would work as well, but as we have these modules freely available, we
should use them. For the program below, we need from the ᴄᴅᴛ2 module only the function initDe
launayTriangulation() to create an outer rectangle for all of our data points, the insertPoint() func
tion to add points, and finally the iterator unconstrainedEdges() to iterate over the edges of the tri
angulation. With e.org and e.dest, we can access the endpoints of an edge, where org is short for
the origin, and dest for the destination.

import std/[random, times, sequtils]
from std/math import `^`
from std/algorithm import sort, SortOrder
import cdt2/[dt, vectors, edges, types]

Subsets implementation

type
 Subsets = object
 parent: seq[int]
 rank: seq[int]

proc init(s: var Subsets; n: int) =
 s.parent = toSeq(0 ..< n)
 s.rank = newSeq[int](n)

363

https://github.com/stefansalewski/cdt2.git
https://github.com/stefansalewski/cdt2.git

proc find(s: var Subsets; i: int): int =
 if s.parent[i] != i:
 s.parent[i] = find(s, s.parent[i])
 return s.parent[i]

proc union(s: var Subsets; i, j: int) =
 let i = find(s, i)
 let j = find(s, j)
 if i != j:
 if s.rank[i] < s.rank[j]:
 s.parent[i] = j
 elif s.rank[i] > s.rank[j]:
 s.parent[j] = i
 else:
 s.parent[i] = j
 inc(s.rank[j])

###

const
 WindowWidth = 1000
 WindowHeight = 1000
 BorderDist = 50
 DataRange = float(1000 - 2 * BorderDist)
 Points = 50

type
 Vec = object
 x, y: float
 id: int

type
 E = object
 v1, v2: Vec
 id: int

type
 Forest = seq[E]

proc cmp(a, b: E): int =
 let d1 = (a.v1.x - a.v2.x) ^ 2 + (a.v1.y - a.v2.y) ^ 2
 let d2 = (b.v1.x - b.v2.x) ^ 2 + (b.v1.y - b.v2.y) ^ 2
 return -(d1 < d2).int + (d1 > d2).int

var
 forest: Forest
 s: Subsets
 cdt = initDelaunayTriangulation(Vector2(x: 0, y: 0), Vector2(x: WindowWidth.float,
y: WindowHeight.float))
 candidates: seq[E]

364

proc init =
 randomize()
 s.init(Points + 4) # we get four additional points from the outer rectangle of the
delaunay triangulation
 for i in 0 ..< Points:
 discard cdt.insertPoint(Vector(x: rand(900.0) + 50.0, y: rand(900.0) + 50.0))

proc createForest =
 for e in unconstrainedEdges(cdt):
 #if e.org.id.int > 3 and e.dest.id.int > 3: # ignore the first 4 points of the
Delaunay rectangle, use this or
 if e.org.point[0] > 0.0 and e.org.point[0] < 1000.0 and e.dest.point[0] > 0.0 and
e.dest.point[0] < 1000.0:
 candidates.add(E(v1: Vec(x: e.org.point[0], y: e.org.point[1], id: e.org.id.
int), v2: Vec(x: e.dest.point[0], y: e.dest.point[1], id: e.dest.id.int)))
 candidates.sort(cmp, SortOrder.Descending)
 while candidates.len > 0:
 let e = candidates.pop
 if s.find(e.v1.id) != s.find(e.v2.id):
 s.union(e.v1.id, e.v2.id)
 forest.add(e)

init()

let start = cpuTime()
createForest()
echo "elapsed: ", (cpuTime() - start) * 1e3, " ms"

import gintro/[gtk4, gobject, gio, cairo]

proc draw(d: DrawingArea; cr: cairo.Context; w, h: int) =
 cr.setSource(1, 1, 1)
 cr.paint # white background
 cr.setSource(1, 0.7, 0.7)
 cr.setLineWidth(1)
 for e in unconstrainedEdges(cdt): # first draw the whole Delaunay triangulation
 cr.moveTo(e.org.point[0], e.org.point[1])
 cr.lineTo(e.dest.point[0], e.dest.point[1])
 cr.stroke
 cr.setLineWidth(2)
 for i, e in forest:
 cr.setSource(0, 0, 0.7) # rgb
 cr.newPath
 cr.arc(e.v1.x, e.v1.y, 5, 0, math.Tau)
 cr.stroke
 cr.newPath
 cr.arc(e.v2.x, e.v2.y, 5, 0, math.Tau)
 cr.stroke
 cr.setSource(0, 0, 0, 1.2 - i.float / Points.float)
 cr.moveTo(e.v1.x, e.v1.y)

365

 cr.lineTo(e.v2.x, e.v2.y)
 cr.stroke

proc activate(app: gtk4.Application) =
 let window = newApplicationWindow(app)
 let d = newDrawingArea()
 d.setSizeRequest(WindowWidth, WindowHeight)
 d.setDrawFunc(draw)
 window.setChild(d)
 window.show

proc main =
 let app = newApplication("org.gtk.example")
 app.connect("activate", activate)
 let status = app.run
 quit(status)

main()

Applying the Kruskal algorithm to the small set of edges in the triangulation improves the perfor
mance drastically. In the next section, we will see how much the Delaunay triangulation can
improve the Prim algorithm.

Prim with Delaunay triangulation
We can combine the Prim algorithm with a Delaunay triangulation to get neighbor relations for our
initial point set. For this variant, it is important that we use the ᴄᴅᴛ2 module, not the ᴄᴅᴛ one. The
ᴄᴅᴛ2 module supports a more OOP-style API, so we can subclass the vertices of the triangulation.
This way, we can add fields like dist, friend, and done, directly to the vertex instances. Without sub
classing, we would have to attach this information in other ways, perhaps by storing it in a separate
sequence and accessing it through the id field of the CDT vertex instances. We use a pool sequence,
which holds copies of our vertices. This is necessary, as we have to remove elements from the pool,
without touching the cdt itself. For this variant, we only need to update the direct neighbors of the
last point that we add to the forest. But still, we have to iterate over the whole pool, to select the
next nearest point. In the next section, we will finally learn how we may avoid this iteration by
using a priority queue.

import std/[random, times, tables]
from std/math import `^`
import cdt2/[dt, vectors, edges, types]

type
 DVertex = ref object of Vertex
 dist: float = Inf
 friend: DVertex
 done: bool

proc allocV(): Vertex =

366

 DVertex(dist: Inf)

const
 WindowWidth = 1000
 WindowHeight = 1000
 BorderDist = 50
 DataRange = float(1000 - 2 * BorderDist)
 Points = 50

var
 cdt: DelaunayTriangulation
 forest: seq[DVertex]
 pool: seq[DVertex]

proc init =
 randomize()
 cdt = initDelaunayTriangulation(Vector2(x: 0, y: 0), Vector2(x: WindowWidth.float,
y: WindowHeight.float),
 vertexAllocProc = allocV)

 for i in 0 ..< Points:
 let v = DVertex(dist: Inf)
 discard cdt.insertPoint(Vector(x: rand(DataRange) + BorderDist, y: rand(DataRange)
+ BorderDist), v = v)
 pool.add(v)

proc createForest =
 var last: DVertex = pool.pop
 last.done = true
 while pool.len > 0:
 for v in last.neightbors:
 if not DVertex(v).done:
 let v = DVertex(v)
 let d = (v.point.x - last.point.x) ^ 2 + (v.point.y - last.point.y) ^ 2
 if d < v.dist:
 v.dist = d
 v.friend = last
 var nearest = Inf
 var pos = -1
 for p, v in pool:
 if v.dist < nearest:
 nearest = v.dist
 pos = p
 last = pool[pos]
 last.done = true
 forest.add(last)
 pool.del(pos)

init()

let start = cpuTime()

367

createForest()
echo "elapsed: ", (cpuTime() - start) * 1e3, " ms"

import gintro/[gtk4, gobject, gio, cairo]

proc draw(d: DrawingArea; cr: cairo.Context; w, h: int) =
 cr.setSource(1, 1, 1)
 cr.paint # white background
 cr.setSource(1, 0.7, 0.7)
 cr.setLineWidth(1)
 for e in unconstrainedEdges(cdt): # first draw the whole Delaunay triangulation
 cr.moveTo(e.org.point[0], e.org.point[1])
 cr.lineTo(e.dest.point[0], e.dest.point[1])
 cr.stroke
 cr.setLineWidth(2)
 for i, el in forest:
 cr.setSource(0, 0, 0.7) # rgb
 cr.newPath
 cr.arc(el.point.x, el.point.y, 5, 0, math.Tau)
 cr.stroke
 cr.setSource(0, 0, 0, 1.2 - i.float / Points.float)
 cr.moveTo(el.point.x, el.point.y)
 cr.lineTo(el.friend.point.x, el.friend.point.y)
 cr.stroke

proc activate(app: gtk4.Application) =
 let window = newApplicationWindow(app)
 let d = newDrawingArea()
 d.setSizeRequest(WindowWidth, WindowHeight)
 d.setDrawFunc(draw)
 window.setChild(d)
 window.present

proc main =
 let app = newApplication("org.gtk.example")
 app.connect("activate", activate)
 let status = app.run
 quit(status)

main()

Prim with Delaunay triangulation and priority queue
A priority queue is a data structure that allows us to extract the smallest element quickly (O(1)), and
to insert more elements while preserving the order. Textbooks sometimes advertise the famous
Fibonacci heap, which is a form of a priority queue, for which not only extraction of the smallest
value, and insertion of more elements is of O(1), but which allows also very fast updating of the
value of already contained elements. However, the Fibonacci heap is complex and often not as fast
in practice as it is in theory. And for Nim, we currently have no Fibonacci heap implementation

368

available. What is available for Nim is the simple ʜᴇᴀᴘ-ǫᴜᴇᴜᴇ module of Nim’s standard library.
However, as our Prim algorithm requires distance updates, which the heap-queue does not support,
we might think that Nim’s heap-queue cannot be used in our use case. But there is a trick available,
with which we can circumvent this restriction — the trick is sometimes mentioned in textbooks
when Dijkstra’s algorithm for shortest path search is discussed, see https://en.wikipedia.org/wiki/
Dijkstra%27s_algorithm.

The trick is that instead of updating the priority field of elements already stored in the queue, we
just add a copy with an updated priority field, and ignore the old elements for the extraction
process. This results typically in a good performance, as the updating is not that often needed at all,
and we always extract the updated copies before the old, invalid elements, which we just ignore. To
use this strategy, we need a way to detect old, invalid elements. In fact, ref object instances do not
work for this case. We need value types for this, which we can copy and modify without modifying
the original. Since the Delaunay triangulation works internally with ref objects, we create a wrap
per object for our vertices:

type
 DVertex = ref object of Vertex
 dist: float = Inf
 friend: DVertex
 done: bool

 Container = object
 dv: DVertex
 pri: float

We subclass the Vertex data type of the ᴄᴅᴛ2 Delaunay triangulation module by adding a distance
field and a friend field, which stores the other endpoint of a vertex in the tree, and a boolean done
field, which is used to remember if a vertex instance is already part of the tree or is still
unprocessed.

Our value data type, Container, has two fields: a reference to a Vertex instance and a pri field, which
is initially identical to the dist field of the Vertex. When distances change, we update the dist field
of our vertex and add a new Container instance to the priority queue. Then, for the old Container
instance, dist and pri differ, indicating that the container instance is invalid and should be ignored.

import std/[random, times, heapqueue, tables]
from std/math import `^`
import cdt2/[dt, vectors, edges, types]

const
 WindowWidth = 1000
 WindowHeight = 1000
 BorderDist = 50
 DataRange = float(1000 - 2 * BorderDist)
 Points = 50

type

369

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

 DVertex = ref object of Vertex
 dist: float = Inf
 friend: DVertex
 done: bool

type
 Container = object
 dv: DVertex
 pri: float

proc `<`(a, b: Container): bool = a.pri < b.pri

proc allocV(): Vertex =
 DVertex(dist: Inf)

var
 cdt: DelaunayTriangulation
 hq: HeapQueue[Container]
 forest: seq[DVertex]

proc init =
 randomize()
 cdt = initDelaunayTriangulation(Vector2(x: 0, y: 0), Vector2(x: WindowWidth.float,
y: WindowHeight.float),
 vertexAllocProc = allocV)
 for i in 0 ..< Points:
 let v = DVertex(dist: Inf)
 discard cdt.insertPoint(Vector(x: rand(DataRange) + BorderDist.float, y: rand
(DataRange) + BorderDist.float), v = v)

proc createForest =
 var last: DVertex = DVertex(cdt.subdivision.vertices[4]) # arbitrary start point,
but not the first four!
 last.done = true
 while true:
 for v in last.neightbors:
 if not DVertex(v).done:
 let v = DVertex(v)
 let d = (v.point.x - last.point.x) ^ 2 + (v.point.y - last.point.y) ^ 2
 if d < v.dist:
 v.dist = d
 v.friend = last
 hq.push(Container(dv: v, pri: d))
 if hq.len == 0:
 break
 let h = hq.pop
 if h.pri == h.dv.dist and h.dv.id.int > 3: # h.dv.point.x != 1000 and h.dv.point.x
!= 0: # let us
 last = h.dv # ignore the corners of outer cdt rectangle
 last.done = true
 forest.add(last)

370

init()

let start = cpuTime()
createForest()
echo "elapsed: ", (cpuTime() - start) * 1e3, " ms"

import gintro/[gtk4, gobject, gio, cairo]

proc draw(d: DrawingArea; cr: cairo.Context; w, h: int) =
 cr.setSource(1, 1, 1)
 cr.paint # white background
 cr.setSource(1, 0.7, 0.7)
 cr.setLineWidth(1)
 for e in unconstrainedEdges(cdt): # first draw the whole Delaunay triangulation
 cr.moveTo(e.org.point[0], e.org.point[1])
 cr.lineTo(e.dest.point[0], e.dest.point[1])
 cr.stroke
 cr.setLineWidth(2)
 for i, el in forest:
 cr.setSource(0, 0, 0.7) # rgb
 cr.newPath
 cr.arc(el.point.x, el.point.y, 5, 0, math.Tau)
 cr.stroke
 cr.setSource(0, 0, 0, 1.2 - i.float / Points.float)
 cr.moveTo(el.point.x, el.point.y)
 cr.lineTo(el.friend.point.x, el.friend.point.y)
 cr.stroke

proc activate(app: gtk4.Application) =
 let window = newApplicationWindow(app)
 let d = newDrawingArea()
 d.setSizeRequest(WindowWidth, WindowHeight)
 d.setDrawFunc(draw)
 window.setChild(d)
 window.present

proc main =
 let app = newApplication("org.gtk.example")
 app.connect("activate", activate)
 let status = app.run
 quit(status)

main()

Before we can use the heap queue, we must define a < relation for our Container data type. We pop
ulate the Delaunay instance with our random points. At the beginning of our createForest() proce
dure, we pick a random starting point from the cdt instance — actually not one of the first four, as
these are points of the outer rectangle, which we intend to ignore. Then we use the iterator
last.neighbors() to iterate over the neighbors of the point that we added last to our forest. After the

371

distances have been updated, we can use hq.pop to extract an element with the lowest priority
from the heap-queue, and add that vertex to our forest. You may wonder why we need the done
field in the Vertex object. Well, without it, we would modify the existing forest, destroying the exist
ing neighborship relations! You may compile the above code with the -d:release option for the
default 50 points, and for 500 points. The runtime should be approximately 30 and 300 microsec
onds on modern hardware, which is not bad, and shows that the runtime increases linearly with
the number of points, so the algorithm is nearly O(n) in big O notation. Also note that for all the pre
sented MST algorithms, we can modify the cost or distance function to tune the resulting graph
shape. For instance, instead of the (squared) Euclidean distance, we may use an expression like let
d = (v.point.x - last.point.x) ^ 2 + (v.point.y - last.point.y) ^ 2 + max((500 -
v.point.x).abs, (500 - v.point.y).abs) ^ 2. Here, we add to the Euclidean distance the distance of
the new point from the center of the graph (500), so that points close to the center are preferred,
resulting in a star-shaped graph. For some applications, like power supply traces (on a PCB) such a
layout may be preferred.

References:

• https://en.wikipedia.org/wiki/Minimum_spanning_tree

• https://en.wikipedia.org/wiki/Euclidean_minimum_spanning_tree

• https://en.wikipedia.org/wiki/Prim%27s_algorithm

• https://en.wikipedia.org/wiki/Kruskal%27s_algorithm

• https://en.wikipedia.org/wiki/Disjoint-set_data_structure

• https://en.wikipedia.org/wiki/Delaunay_triangulation

GUI toolkits
Explaining only one of the more than 20 available GUI toolkits in some detail would be far too
much for this book. So we can only give a list of some of the available toolkits with a short descrip
tion and a link to it. For the Gintro GTK bindings, you may also consult the GTK-Programming com
panion book by the same author, which is still in an early stage (perhaps 25% done). However, note
that GTK is not as popular these days, and the Gintro package has currently very few users. The rea
sons are obvious: GTK is coded in C, which makes its further development a pain, bindings to other
languages always imply some overhead, a high maintenance effort, and never work perfectly. But
even Rust, with its much larger community and many bright developers, has similar problems:
Native Rust GUI toolkits like Droid, Iced or Xilem are in early development states, and people often
use still GTK-rs instead.[1]

Winim

Nim’s Windows API and COM library (https://github.com/khchen/winim)

nimqt

Qt bindings for nim (https://github.com/jerous86/nimqt)

wNim

Nim’s Microsoft Windows GUI Framework (https://github.com/khchen/wNim)

372

https://en.wikipedia.org/wiki/Minimum_spanning_tree
https://en.wikipedia.org/wiki/Euclidean_minimum_spanning_tree
https://en.wikipedia.org/wiki/Prim%27s_algorithm
https://en.wikipedia.org/wiki/Kruskal%27s_algorithm
https://en.wikipedia.org/wiki/Disjoint-set_data_structure
https://en.wikipedia.org/wiki/Delaunay_triangulation
https://github.com/khchen/winim
https://github.com/jerous86/nimqt
https://github.com/khchen/wNim

wxnim

Nim wrapper for wxWidgets (https://github.com/PMunch/wxnim)

Fidget

Fidget - A cross-platform UI library for nim (https://github.com/treeform/fidget)

Fidgetty

Widget library built using a fork of Fidget written in pure Nim and OpenGL rendered.
(https://github.com/elcritch/fidgetty)

Figuro

Experimental UI Library for Nim (https://github.com/elcritch/figuro)

Owlkettle

A declarative user interface framework based on GTK 4 (https://github.com/can-lehmann/owlket
tle)

NiGui

Cross-platform desktop GUI toolkit written in Nim (https://github.com/simonkrauter/NiGui)

GenUI

This is what might become a really kick-ass cross-platform native UI toolkit (https://github.com/
PMunch/genui)

nimx

Cross-platform GUI framework in Nim (https://github.com/yglukhov/nimx)

WebGui

Web Technologies based Cross-platform GUI Framework with Dark theme (https://github.com/
juancarlospaco/webgui)

nimgui

cimgui bindings for Nim (https://github.com/zacharycarter/nimgui)

nfltk

Nimized Fast Light Toolkit (https://github.com/Skrylar/nfltk)

IUP

iup wrapper for Nim. Used to be part of the stdlib, now a Nimble package. (https://github.com/
nim-lang/iup)

NimQML

Qt Qml bindings for the Nim programming language (https://github.com/filcuc/nimqml)

ui

Beginnings of what might become Nim’s official UI library (https://github.com/nim-lang/ui)

373

https://github.com/PMunch/wxnim
https://github.com/treeform/fidget
https://github.com/elcritch/fidgetty
https://github.com/elcritch/figuro
https://github.com/can-lehmann/owlkettle
https://github.com/can-lehmann/owlkettle
https://github.com/simonkrauter/NiGui
https://github.com/PMunch/genui
https://github.com/PMunch/genui
https://github.com/yglukhov/nimx
https://github.com/juancarlospaco/webgui
https://github.com/juancarlospaco/webgui
https://github.com/zacharycarter/nimgui
https://github.com/Skrylar/nfltk
https://github.com/nim-lang/iup
https://github.com/nim-lang/iup
https://github.com/filcuc/nimqml
https://github.com/nim-lang/ui

uing

A fork of ui that wraps libui-ng instead of libui (https://github.com/neroist/uing)

uibuilder

UI prototyping with Glade (https://github.com/ba0f3/uibuilder.nim)

sciter

Nim bindings are a work in progress (https://sciter.com/forums/topic/nim-bindings-for-sciter/)

nim-nanovg

Nim wrapper for the NanoVG vector graphics library for OpenGL (https://github.com/johnnovak/
nim-nanovg)

rdgui

A modular GUI toolkit for rapid (https://github.com/liquidev/rdgui)

nodesnim

The Nim GUI/2D framework, based on OpenGL and SDL2 (https://github.com/Ethosa/nodesnim)

neel

A Nim library for making Electron-like HTML/JS GUI apps (https://github.com/Niminem/Neel)

mui

microui, a tiny immediate-mode ui library (https://github.com/Angluca/mui)

Nimforms

A simple gui library for Nim programming language based on Windows API (https://github.com/
kcvinker/Nimforms)

Some of these bindings may currently not compile with the latest Nim compiler or may not support
the new ARC memory management. Most of the above bindings are hosted at GitHub, you can use
GitHub, Google, or Nimble search, to locate the packages.

There exist also two interesting other GUI-related packages:

• NimForUE:: Nim plugin for UE5 with native performance (https://github.com/jmgomez/Nim
ForUE)

• godot-nim:: Nim bindings for Godot Engine (https://github.com/pragmagic/godot-nim)

No game programming?
No, not yet. We know that for many people, game programming is the initial motivation to start
with computer programming, so a larger section about this topic would make indeed some sense.
However, there are some reasons why we currently do not have this section. The most important
reason is, that we try to present in this book that stuff, that is very fundamental and that is not pre
sented in other freely accessible places in a beginner-friendly fashion. And there is a lot of this,
which seems to be more essential than games. The other reason is, that for a section about games,
we would have to make a lot of decisions in advance: 2D or 3D game, action game, or strategy game.

374

https://github.com/neroist/uing
https://github.com/ba0f3/uibuilder.nim
https://sciter.com/forums/topic/nim-bindings-for-sciter/
https://github.com/johnnovak/nim-nanovg
https://github.com/johnnovak/nim-nanovg
https://github.com/liquidev/rdgui
https://github.com/Ethosa/nodesnim
https://github.com/Niminem/Neel
https://github.com/Angluca/mui
https://github.com/kcvinker/Nimforms
https://github.com/kcvinker/Nimforms
https://github.com/jmgomez/NimForUE
https://github.com/jmgomez/NimForUE
https://github.com/pragmagic/godot-nim

Using a game engine, or only a simple library like cairo, sdl2, raylib, or godot? When using a game
engine, the decision of which one we should use, and which set of Nim bindings to use, is not a sim
ple one, and we should try to ensure that the bindings are actively developed and so should work in
a few years with Nim 2.0 still. And finally, there are already some nice tutorials for game program
ming available, see for example

• https://github.com/jmgomez/NimForUE (Nim plugin for UE5 with native performance)

• https://hookrace.net/blog/writing-a-2d-platform-game-in-nim-with-sdl2/

• https://github.com/Ethosa/nodesnim

• https://github.com/paranim/paranim

• https://github.com/jiro4989/nimtetris

• https://github.com/jiro4989/nimothello

• https://forum.nim-lang.org/t/8080

• https://github.com/dsrw/enu

• https://github.com/def-/nimes

• https://vladar4.github.io/nimgame2/

• https://github.com/greenfork/nimraylib_now

• https://github.com/pragmagic/godot-nim

• https://github.com/nimgl/nimgl

• https://github.com/Vladar4/sdl2_nim

• https://github.com/ftsf/nico

• https://github.com/StefanSalewski/salewski-chess

• https://github.com/planetis-m/goodluck/

• https://forum.nim-lang.org/t/8619

Actually, game programming is not that difficult, when we have a nice library with a good tutorial
available. Game programming can be much fun, which is great, but actually, we do not learn much
when we move some sprites over the screen. On the other hand, advanced game programming, by
using a big library like Godot, doing all with basic libs like SDL2 or Raylib, or developing your own
game engine based on OpenGL or Vulkan, is a very demanding task.

So maybe, we will add a section about game programming at the end, when the rest of the book is
done, or maybe when the next edition of the book is published.

[1] https://raphlinus.github.io/rust/gui/2022/07/15/next-dozen-guis.html

375

https://github.com/jmgomez/NimForUE
https://hookrace.net/blog/writing-a-2d-platform-game-in-nim-with-sdl2/
https://github.com/Ethosa/nodesnim
https://github.com/paranim/paranim
https://github.com/jiro4989/nimtetris
https://github.com/jiro4989/nimothello
https://forum.nim-lang.org/t/8080
https://github.com/dsrw/enu
https://github.com/def-/nimes
https://vladar4.github.io/nimgame2/
https://github.com/greenfork/nimraylib_now
https://github.com/pragmagic/godot-nim
https://github.com/nimgl/nimgl
https://github.com/Vladar4/sdl2_nim
https://github.com/ftsf/nico
https://github.com/StefanSalewski/salewski-chess
https://github.com/planetis-m/goodluck/
https://forum.nim-lang.org/t/8619
https://raphlinus.github.io/rust/gui/2022/07/15/next-dozen-guis.html

Part V: External Packages
In this part of the book, we will present you with some external packages, which can easily be
installed with Nim’s package manager(s).

For packages registered in the Nimble database, executing the nimble install command

nimble install packageName

is sufficient, and you can also install unregistered packages, hosted at github.com or another plat
forms, with a command like

nimble install https://github.com/user/packageName

Note, that we call nimble commands like install generally as an ordinary user, not as admin or root
with administrator privileges. We told you already in the introduction to this book, that we do not
intend to discuss the detailed use of nimble in this book, at least not for the first edition. The Nimble
package manager is described in detail in https://github.com/nim-lang/nimble, and also in the Man
ning book. There you can also learn how you can create Nimble packages yourself, and how you
can register your own packages in Nimble’s database so that other people can find them easier.
While Nimble is Nim’s default package manager, which is currently used by the majority of the user
base, there exists also the alternative implementation https://github.com/disruptek/nimph, and
some lesser-known ones like Nimp, Slim or Nifty. And there are rumors, that A. Rumpf has also
started developing one more package manager called Atlas.[1]

We have already a few thousand external packages for Nim — you may use commands like nimble
list or nimble search to list all registered packages or to search in the database for entries, or you
can use https://nimble.directory/ or the GitHub online search to find more packages. You can also
consult the list of curated Nim packages at https://github.com/xflywind/awesome-nim.

While the use of external packages is really easy, there are some critical points to consider: External
packages are not audited by the Nim core team, so the quality of external packages can vary, and in
principle, external packages can even contain malicious code, which may damage your computer,
when you install and use that package. Well, as we use the nim and nimble commands as a plain user
without administrator privileges, there is no real danger that the computer OS can be dam
aged — only our own user data may get corrupted or damaged. But as we back up all of our impor
tant data regularly, there is not that much danger, a SSD hardware crash seems to be more likely. A
more serious issue with external packages arises from the fact, that the packages may get outdated
and abandoned, and may stop working with recent versions of the Nim compiler, or even may get
totally removed from the internet without prior announcements. So when you should create a
larger software project that depends on external packages, then you should save a local copy of that
package, or you may even consider creating a private fork of that GitHub package.

Some programming languages like Python are shipped already with a very large collection of
libraries so that external packages are not that often required at all. Other languages like C++ come
basically without any packages or a language-specific package manager, so we would use the pack

376

https://github.com/nim-lang/nimble
https://github.com/disruptek/nimph
https://nimble.directory/
https://github.com/xflywind/awesome-nim

age manager provided by the operating system to install important C++ packages like Boost or
CGAL, or install needed libraries manually. Nim is between these two extremes — it provides
already a large collection of modules with its standard library but has also a lot of external pack
ages. Both, internal core modules, and external packages have their merits. We mentioned already
some disadvantages of external packages, but actually, they have also benefits: They can be devel
oped, updated, and improved very fast, as they are not strongly coupled to compiler release
updates and one external package can easily be replaced by another similar one. A large set of
internal packages can, on the other hand, be a large maintainment burden for the language core
team — the packages have to be tested and maybe fixed for each new compiler version, and replac
ing or removing legacy internal core packages can lead to a lot of problems.

In this part of the book, we will present a very small set of external packages only. This is mostly
done to tell you about the existence and usefulness, and for some packages because the currently
available documentation is not really beginner-friendly.

We will start with a powerful package for the use of the Parsing Expression Grammar (PEG), which
is an alternative to the use of regular expressions for parsing tasks.

377

Parsing expression grammars
Parsing whole text files or single strings is a common programming task, e.g. to process textual
user input or to extract data from HTML or CSV files. Traditionally, this is often done by the use of
regular expressions — in Part III of the book we show, how it can be done by use of the ʀᴇɢᴇx mod
ule.

PEGs, or Parsing Expression Grammars, are another formalism for recognizing patterns in texts by
use of a set of rules. A PEG can be used as an alternative to regular expressions for parsing, pattern
matching, and text processing. The Parsing Expression Grammar was introduced by Bryan Ford in
2004 and is closely related to the family of top-down parsing languages introduced in the early
1970s. PEGs are a derivative of the Extended Backus-Naur Form (EBNF) with a different interpreta
tion, designed to represent a recursive descent parser.

PEGs are not unlike regular expressions, but offer more power and flexibility, and have fewer
ambiguities. For example, a regular expression inherently cannot find an arbitrary number of
matched pairs of parentheses, because it is not recursive, but a PEG can.

As PEGs can be constructed in a hierarchical way from individual rules, it can be easier to create or
understand them, compared to regular expressions.

While the use of regular expressions is very similar in different programming languages or exter
nal tools like sed and grep, the API for PEG libraries can be very different, and even the actual syn
tax for building parsing rules can differ.

Nim’s standard library already includes a simple ᴘᴇɢs module, but we will use the more advanced
external NPeg package of Ico Doornekamp instead. NPeg is a pure Nim library, that provides
macros to compile PEGs to Nim procedures, which can parse strings and collect selected parts of
the input.

In this section, we will try to explain the basic concepts of PEG use and give some examples. For a
more formal and complete description, you should refer to the linked Wikipedia article and consult
the API documentation of the ɴᴘᴇɢ module.

Formally, a parsing expression grammar consists of a starting expression, a set of parsing rules, and
finite sets of terminal and nonterminal symbols.[2]

Each parsing rule has the form A ← e, where A is a nonterminal symbol, and e is a parsing expres
sion. An (atomic) parsing expression consists of terminal or nonterminal symbols or an empty
string. New parsing expressions can be constructed from existing ones by concatenation
(sequence), an ordered choice, by repetitions (zero-or more, one-or-more, optional) of an existing
expression, and by use of the and and not predicate. The and-predicate expression &e invokes the
sub-expression e, and then succeeds if e succeeds and fails if e fails, but in either case, never con
sumes any input. The not-predicate expression !e succeeds if e fails and fails if e succeeds, again
consuming no input in either case. Because these two predicates can use an arbitrarily complex
sub-expression to "look ahead" into the input string without actually consuming it, they provide a
powerful syntactic look-ahead and disambiguation facility, in particular when reordering the alter
natives cannot specify the exact parse tree desired.

378

NPeg is a pure Nim pattern-matching library. It provides macros to compile patterns and grammars
(PEGs) to Nim procedures, which will parse a string and collect selected parts of the input. In this
way, npeg is an alternative to the use of the ʀᴇɢᴇx module, but npeg does not support the optional
replacement of matched patterns. You can install the ɴᴘᴇɢ package with the command

nimble install npeg

As understanding and using the PEG is really not that easy, and as most readers may never have
heard about PEG at all, we will start with a few very simple examples. First, let us parse just a few
decimal digits:

import npeg

let p = peg("str"):
 str <- +{'0'..'9'}

echo p.match("123").ok

The ɴᴘᴇɢ module defines a few macros for processing PEG patterns. One of them is the peg() macro.
We pass a starting expression in the form of a string as an argument, and it creates and returns a
Parser object. In the body of the peg() macro, we have to define all the grammar rules that our PEG
is built upon. For our example, we only need one simple rule which is a repetition of the decimal
digits zero to nine.

The ɴᴘᴇɢ module uses as terminal symbols single characters enclosed in single quotes or strings
enclosed in double quotes.

In the original PEG syntax, a pair of square brackets is used to specify character ranges like ['a'..'z']
for the lowercase letters of the alphabet, but the ɴᴘᴇɢ module uses curly braces instead.

So in the npeg syntax {'0'..'9'} stands for a single decimal digit, and the leading + indicates one or
more repetitions. In the original PEG syntax, we would use square brackets instead and put the +
after the closing square bracket, that is ['0'..'9']+. We can also list the characters of a character
class separated by commas, e.g. {'a', 'z'} for 'a' or 'z'. The symbol ← assigns the parsing rule to the
nonterminal symbol str, which is already identical to the starting expression.

The peg() macro returns a Parser object, which we can pass together with a string that should be
parsed to the match() function. The function match() returns an instance of a MatchObject — we use
the ok field of this object to check if the match was successful.

When we intend to use the ɴᴘᴇɢ module, we have to know that this module uses a syntax,
which is not fully identical to the original PEG definition, which is used by the ᴘᴇɢs module of
Nim’s standard library: Originally, character classes were created by enclosing individual
characters or character ranges in square brackets, similar as done for regular expressions.
However, the ɴᴘᴇɢ module uses a pair of curly braces instead. In PEG, repetitions are speci
fied by *, + and ? for zero or more, one or more, and zero or one, respectively, as in regular
expressions. In the original PEG design, these characters were put after an expression, while

379

for the npeg syntax, we have to put them in front of an expression. In the original PEG syntax,
sequences of expressions are just separated by spaces, while in npeg syntax a * is used, and
for the ordered choice npeg syntax uses the | instead of the original slash (/) symbol. Like the
original PEG syntax, npeg uses the symbols & and ! for the non-capturing and and not predi
cates. Additional npeg provides the symbol 1 to match all, 0 to match nothing, and an infix -
operator — P1 - P2 matches P1 if P2 does not match. So, an expression that matches all char
acters but a space, for example, can be easily written as 1 - ' '.

In the next example, we will create a PEG pattern that can match a simple mathematical term built
from decimal digits and the two operators + and - for addition and subtraction:

import npeg

let p2 = peg("term"):
 term <- dig * *(op * dig)
 dig <- +{'0'..'9'}
 op <- {'+', '-'}

echo p2.match("1+23").ok

We said that the symbol * is used to indicate zero or more repetitions of an expression. But for the
ɴᴘᴇɢ module, this * is used at the same time to construct sequences of expressions, that is to say, to
concatenate expressions. In the code above, we pass the string "term" as the starting expression to
the peg() macro. In the macro body, we define three rules, each of which assign an expression to the
nonterminal symbols term, dig, and op. In the expression dig * *(op * dig) the second * in front of
the opening brace indicates an arbitrary number of repetitions of the expression enclosed by the
round brackets, while the first and third * indicate the sequence or concatenation operation. The
following two rules just define a sequence of one or more decimal digits and the operator for addi
tion or subtraction.

Capturing data
The ɴᴘᴇɢ module offers plain string captures, and more flexible code block captures.

String captures

Let us assume that we want to split a line of text into words:

import npeg

let p = peg("line"):
 line <- +(space * >word)
 word <- +{'a'..'z'}
 space <- *' '

let m = p.match(" one two three ")
if m.ok:

380

 echo m.matchLen
 echo m.captures

16
@["one", "two", "three"]

The MatchResult returned by the peg() macro has the exported fields matchLen and captures, which
we can read out in case of a successful match. The field matchLen tells us how many characters of
the string have been captured, and captures is a seq[string], containing the captured strings.[3]

Code block captures

Code block captures offer the most flexibility for accessing matched data in NPeg. This allows you to
define a grammar with embedded Nim code for handling the data during parsing.

When a grammar rule ends with a colon :, the next indented block in the grammar is interpreted as
Nim code, which gets executed when the rule has been matched. Any string captures that were
made inside the rule are available to the Nim code in the injected variable capture[] of type
seq[Capture]. Capture is an object with field s containing the captured string, and field si contain
ing the index position of the capture inside the original string.

The total sub-string matched by the code block rule is available as capture[0], and the individual
captured strings are available with indices > 0. In the indented code block, we can also use $n
instead of capture[n].s and @n instead of capture[n].si.

We could use the seq of captures to print the captured strings or to copy them into some global
variable. To avoid the need for global variables, we can pass to the peg() macro a second argument,
which is a name and a data type separated by a colon, like peg(name, identifier: Type). The second
parameter is then available as an ordinary variable in the code block.

For our next example, we will assume that we have written a plain CAD tool, that allows the user to
enter textual commands like moveTo(x, y).

import npeg, std/tables

type T = Table[string, string]

let p = peg("command", t: T):
 command <- >com * '(' * >pos * ',' * >pos * ')':
 # echo $1, $2, $3
 t["action"] = $1
 t["x"] = $2
 t["y"] = $3
 com <- "moveTo" | "lineTo"
 pos <- +{'0'..'9'}

var input: T

381

if p.match("moveTo(12,20)", input).ok:
 echo input["action"], ": ", input["x"], ", ", input["y"]

To keep the example simple and short, we assume that we have to process only two different com
mands, moveTo() and lineTo(), each accepting x and y coordinates in integer form. We pass a second
argument to the peg() macro, which is the name and the data type of a Table instance. We have cho
sen the string data type for the key and value type of that table, as we want to store the command
name as well as the x/y coordinates, so an integer value type would not work. The macro body
defines three rules — command, com, and pos. For the command rule, we use an expression, which starts
with the command name, followed in round brackets, by the x/y coordinate pair. We put the > oper
ator in front of the nonterminal symbols com and pos to capture these values. We put a colon after
the command rule and can access the captured values in the indented block, by using the $N sym
bol. For the com rule, we specify the literal terminal symbols "moveTo" and "lineTo" as ordered
choices using the | operator. Finally, the expression for the pos rule is just a sequence of one or
more decimal digits.

Simple patterns

For simple patterns, it might not be necessary to define multiple parsing rules. In that case, we can
use the patt() macro instead of peg() and pass just a single one-line pattern as an argument.

For example, the pattern below splits a string by white space:

import npeg
let parser = patt *(*' ' * > +(1-' '))
echo parser.match(" one two three ").captures

We took this example from the npeg API documentation verbatim. Here, the patt() macro uses Nim’s
command invocation syntax, so there are no outer brackets after the macro name. The innermost
bracket uses the notation (1-' ') to match everything but a space, and the content of the outer
bracket starts with an arbitrary number of uncaptured spaces.

"Look ahead" operators

The PEG syntax also defines the two non-capturing and and not syntactic predicates, which uses the
symbols & and ! and provides a powerful syntactic look ahead and disambiguation facility. A com
mon use of the ! predicate is to terminate a parsing expression with !1. Here the 1 matches every
thing, and !1 would only match when there is nothing left to match, that is, the string end is
reached.

We will end our introduction to the parsing expression grammar and the use of the ɴᴘᴇɢ module
here. To learn all the details about PEG, like restrictions, performance, and memory consumption,
you should consult the Wikipedia article or other dedicated literature. And for advanced uses of the
ɴᴘᴇɢ module, including the use of back-references, and all the available syntax elements, you have
to study its API documentation carefully. The section [Parsing data files in parallel] in Part VI of the
book has one more example of the use of PEGs. There we compare various parsing strategies and
present a program that parses a larger CSV file in parallel.

382

References:

• https://github.com/zevv/npeg

• https://en.wikipedia.org/wiki/Parsing_expression_grammar

[1] Currently, the appendix of this book has a short introduction to Nimble, similar to the one from the Manning book. But it may
get removed later again, and the GitHub Readme is a much more detailed description.

[2] https://en.wikipedia.org/wiki/Parsing_expression_grammar

[3] Of course, the example from above works only for lines containing only lowercase words — we will present a better line-split
ting example soon.

383

https://github.com/zevv/npeg
https://en.wikipedia.org/wiki/Parsing_expression_grammar
https://en.wikipedia.org/wiki/Parsing_expression_grammar

Cligen command line interface generator
In Part III of the book, we presented the module ᴘᴀʀsᴇoᴘᴛ of Nim’s standard library, which can help
us to parse the command line string — for programs launched from within a terminal window, by
typing the command name followed by a set of options and arguments. There we also explained the
difference between short and long option names and options with and without values. If you can
not remember these terms, you should read that section again, or maybe skip this section com
pletely, in the case that you are not interested in creating tools that are used from within a terminal
window.

In that [Command line parsing] section, we said that with the external package Cligen the process
ing of options and parameters for command-line tools can be significantly simplified. The basic
idea of the Cligen package is that the parameter list of Nim procs already provides a valuable speci
fication for parameters: It provides names, data types, and optional default values for a set of para
meters, in a form, which is already familiar to the Nim user. The ᴄʟɪɢᴇɴ module allows us to just
create a top-level proc with a parameter list, which can be invoked directly from the command
line, with all the parameters being passed in automatically. We only have to call the dispatch()
macro on that procedure; this macro does all the work for us. If you want to try this package, you
can install it with the Nimble package manager with this command:

nimble install cligen

At the end of the [Command line parsing] section, we provided a sketch of a tool called fancyPrint,
that could be used to print files. That tool had options to select single pages to print and to specify
the print quality. With ᴄʟɪɢᴇɴ, we only have to create the proc definition, and call dispatch() on it:

import cligen

type
 Quality = enum
 low, medium, high

const
 AllPages = -1

proc fancyPrint(page = AllPages; quality = medium; verbose = false; files: seq[string
]) =
 if files.len == 0:
 echo "Missing names of files to print!"
 quit()
 if verbose:
 if page == AllPages:
 echo "We print all the pages of the specified files!"
 else:
 echo "We print page ", $page, " only"
 echo "Print quality: ", quality
 for f in files:

384

 echo "Printing ", f, " ..."
 # insert the real code here!

dispatch(fancyPrint)

When you have installed ᴄʟɪɢᴇɴ already as suggested above, you can compile and run this code:

nim c fancyprint.nim
...
./fancyprint -p12 --quality:high --verbose file1.pdf file2.pdf
...

We print page 12 only
Print quality: high
Printing file1.pdf ...
Printing file2.pdf ...

Long and short option names, with and without values, are supported, you can use = or : to sepa
rate option names from their values, and leave out the separator as in -p12, when there is no ambi
guity. Long options can be abbreviated, if there is no ambiguity, i.e. we could call our app like ./fan
cyprint --p12 --qual:high --verb file.pdf.

By default, the letter for the short option is the first character of the long option name, but that can
be customized. As option values, most basic Nim data types can be used, this includes numeric
types, enumeration types, and boolean types. For boolean options, instead of giving the short or
long option name without a value to activate that option, it is also possible to use values like false,
true, on, off, 0, 1, to switch that option off or on. When in the proc parameter list, a value has no
default value, then it will become mandatory. We can call the tool also with -h or --help, to get an
informative overview of the intended use:

Usage:
 fancyprint [optional-params] [files: string...]
Options:
 -h, --help print this cligen-erated help
 --help-syntax advanced: prepend,plurals,..
 -p=, --page= int -1 set page
 -q=, --quality= Quality medium select 1 enum Quality
 -v, --verbose bool false set verbose

You can also display a summary of the ᴄʟɪɢᴇɴ syntax with the parameter help-syntax. The ᴄʟɪɢᴇɴ
module offers some more advanced features, which we will not discuss here in detail: We can use a
command mode, to support app calls like nim c …, where the first argument selects which com
mand is called. Or you can specify that a different letter than the first one of the long option name
is used as a short option. Or, instead of directly calling a procedure, we can use ᴄʟɪɢᴇɴ to initialize
an object instance, which is then passed as a parameter to a proc. It is even possible to use other
data types as values than the primitive Nim types when we define converter procs for that data
types.

385

References:

• https://github.com/c-blake/cligen

386

https://github.com/c-blake/cligen

Part VI: Advanced Nim
In this part of the book, we will try to explain the more difficult parts of the Nim programming lan
guage: Macros and meta-programming, asynchronous code, threading, and parallel processing, and
finally the use of Nim’s concepts. We will start with macros and meta-programming, as that seems
to be a really stable part of Nim’s advanced features. Nim’s concepts just got a redesign, and for the
use of asynchronous code, threading, and parallel processing, there exists currently various imple
mentations and all that may change again when the Nim core devs should decide to actually use the
CPS (Continuation-Passing Style) based programming style for the implementation of this.

387

Macros and meta-programming

Introduction
In computer science, a macro (short for "macro instruction") is a rule or pattern, that specifies how
a certain input should be mapped to a replacement output. Meta-programming is a programming
technique, in which computer programs have the ability to treat other programs as their data. It
means, that a program can read, generate, analyze, or transform other programs, and even modify
itself while running.

Legacy programming languages, like C or assembly languages, support already some form of
macros, which typically work directly on the textual representation of the source code.

A common use of textual macros in assembly languages was to group sequences of instructions, like
reading data from a file or from the keyboard, to make those operations easily accessible. The C
programming language uses the #define preprocessor directive to introduce textual macros.
Macros in C can be either single-line or multi-line text substitutions, which are processed by a pre-
processor program, before the actual compiling process. Some examples of common C macros are

#define PI 3.1415
#define sqr(x) (x)*(x)

The basic C macro syntax is, that the first continues character sequence after the #define directive
is replaced by the C preprocessor with the rest of that line. The #define directive has some basic
parameter support, which was used for the sqr() macro above. C macros have the purpose to sup
port named constants and to allow simple parameterized expressions like the sqr() from above,
avoiding the need to create actual functions. The C pre-processor would substitute each occurrence
of the symbol PI in the C source file with the float literal 3.1415, and the term sqr(1+2) with
(1+2)*(1+2).

Self-modifying assembly code, which was used in a few games on home computers in the 1980s,
computer viruses and related malicious code with the ability to modify themselves at runtime, and
JIT-Compilers (Just-In-Time) are a very special variant of metaprogramming. Nim allows the use of
macros and metaprogramming only at compile-time, so unpredictable and possibly dangerous code
modifications at program runtime can not occur. But as Nim’s macros and metaprogramming
capacities are very powerful, they can make it more difficult to understand and reason about the
source code. So metaprogramming should be used with some care, and in some very sensitive
areas, metaprogramming may be restricted.

A Nim macro is a code block, that is executed at compile-time, and transforms a Nim syntax tree
into a different tree. The transformation is supported by Nim’s type introspection abilities, e.g. to
examine the type or properties of objects and other entities. This can be used to add custom lan
guage features and implement domain-specific languages (DSL). While macros enable advanced
compile-time code transformations, they cannot change Nim’s syntax.

The macro keyword is used similarly to proc, func, and template to define a parameterized code
block, which is executed at compile-time and consists of ordinary Nim code, and meta-program

388

ming instructions. The meta-programming instructions are imported from the ᴍᴀᴄʀos module and
are used to construct an Abstract Syntax Tree (AST) of the Nim language. This AST is created by the
macro body at compile time and is returned by the macro as an untyped data type. The parameter
list of macros accepts ordinary (static) Nim data types, and additionally the data types typed and
untyped, which we already used for templates. We will explain the differences between the various
possible data types for macro parameters later in more detail after we have given a first simple
macro example. Note, that Nim macros are hygienic by default, that is, symbols defined inside the
macro body are local and do not pollute the namespace of the environment. Since macros are exe
cuted at compile-time, their use may increase the compile time, but it does not impact the perfor
mance of the final executable. In fact, clever use of macros can sometimes improve the perfor
mance of the final program.

Macros are by far the most difficult part of the Nim programming language. While in lan
guages like Lisp macros integrate very well into the language, for Nim the meta-programming
with macros is very different from the use of the language itself. Nim’s macros are very pow
erful — the current Nim async implementation is based on Nim macros, and some advanced
libraries for threading, parallel processing, or data serialization using JSON or YAML file for
mats, make heavy use of Nim macros. And many modules of the Nim standard library pro
vide some macros, which extend the power of the Nim core language. The well-known with
macro of the eponymous module is just one example of the usefulness of Nim’s macros. And
some small, but important, parts of the high-level GTK bindings are created with macros, for
example, the code to connect GTK callback functions to GTK signals. However, this does not
mean that every Nim user must use macros. For a few use cases, we really need macros; for
other use cases, macros may make our code shorter, and possibly even cleaner. However, the
use of macros can make the code harder to understand for others, especially when we use
exotic or complicated macros of our own. Furthermore, learning advanced Nim macro pro
gramming is not that easy. Nim macros have some similarities to the programming language
C++: When we follow the explanations in a C++ textbook, then the C++ language seems to be
not extremely difficult and even seems to follow a more or less logical design. But then, when
we later try to write some actual code in C++, we notice that actually using the languages is
hard, as long as we do have not a lot of practice. For Nim macros, it is similar — when we fol
low a talk of an experienced Nim programmer about macro programming, or when we read
the code of an existing macro, written by the Nim core devs, then everything seems to not be
that hard. But when we try to create macros of our own for the first time, it can be frustrat
ing. Strange error messages, or even worse, no idea at all how we can solve a concrete task.
So maybe the best start with macros is to read the code of existing macros, study the ᴍᴀᴄʀos
module, to see what is available, and maybe follow some of the various tutorials listed at the
end of this section. Finally, you might need to ask for help in the Nim forum, on IRC, or
through other Nim help channels.

To verify that macros are really executed at compile time, we will start with a tiny macro, that con
tains only an echo statement in its body:

import std/macros

macro m1(s: string): untyped =

389

 echo s

proc main =
 echo "calling macro m1"
 m1("Macro argument")

main()

When we compile the above code, the compiler prints the message "Macro argument" as it processes
the macro body. When we run the program, we get only the output "calling macro m1" from the
main() proc, as the macro m1() does only return an empty AST. The careful reader may wonder
why the echo() statement in the macro body above works at all, since the parameter of macro m1()
is specified as an ordinary string, not as a static[string]. So the type of s in the macro body should
be a NimNode. Well, perhaps an echo() overload exists, that can work with NimNodes, or maybe, as
we pass a string constant to macro m1(), in this concrete case s is indeed an ordinary string in the
macro body. Possibly we should have used s: static[string] as the parameter type, which would
give us the exact same results.

We said that macros always have to return an untyped result. This is true, but since untyped is
the only possible result type, that type can currently be omitted. So you may see in the code of
the Nim standard library a few macros, which seem to return nothing. For our own macros,
we really should always use untyped as the result. And sometimes you may even see macros,
where for parameters no data type is specified at all. In that case, the data type has the
default untyped type.

As macros are executed at compile time, we cannot really pass runtime variables to them. When we
try, we would expect a compiler error:

import std/macros

macro m1(s: string): untyped =
 echo s

proc main =
 var str = "non static string"
 m1(str)

main()

But with the current compiler version 1.5.1, that code compiles and prints the message "str", which
is a bit surprising. To fix this, we can change the parameter type to static[string], which guaran
tees that we can indeed pass only compile-time constants.

Now, let us create macros, which actually create an AST, which is returned by the macro and exe
cuted when we run our program. For creating an AST in the macro body, we have various options:
we can use the parseStmt() function or the "quote do:" notation, to generate the AST from regular
program code in text form, or we can create the syntax tree directly with expressions provided by

390

the ᴍᴀᴄʀos module, e.g. by calls like newTree() or newLit() and such. The latter gives us the best
control over the AST generation process, but is not easy for beginners. The good news is that Nim
now provides a set of helper functions like dumpTree() or dumpAstGen(), which show us the AST
representation of a Nim source code block as well as the commands we can use to create that AST.
This makes it much easier for beginners to learn the basic instructions necessary to create valid
syntax trees and to create useful macros.

We will start with the simple parseStmt() function, which generates the syntax tree from the source
code text string, which we pass as an argument. This seems to be very restricted, and maybe even
useless, as we can write the source code just as ordinary program text outside the macro body. That
is true, but we can construct the text string argument that we pass to the parseStmt() function with
regular Nim code at compile time. That is similar to having one program that generates a new
source code string, saves that string to disk, and finally compiles and runs the created program.
Let us check with a fully static string, that parseStmt() actually works:

import std/macros

macro m1(s: static[string]): untyped =
 result = parseStmt(s)

proc main =

 const str = "echo \"We like Nim\""
 m1(str)

main()

When we compile and run the above program, we get the output "We like Nim". The macro m1() is
called at compile-time with the static parameter str, and returns an AST which represents the
passed program code fragment. That AST is inserted into our program at the location of the macro
call, and when we run our program, the compiled AST is executed and produces the output.

Of course, executing a fully static string this way is useless, as we could have used regular program
code instead. Now, let us investigate how we can construct some program code at compile time. Let
us assume that we have an object with multiple fields, and we want to print the field contents. A
sequence of echo() statements would do that for us, or we may use only one echo() statement when
we separate the field arguments each by "\n". The ᴡɪᴛʜ module may further simplify our task. But
as we have to print multiple fields, not an array or a seq, we can not directly iterate over the values
to process them. Let us see how a simple text string based macro can solve the task:

import std/macros

type
 O = object
 x, y, z: float

macro m1(objName: static[string]; fields: varargs[untyped]): untyped =
 var s: string

391

 for x in fields:
 s.add("echo " & objName & "." & x.repr & "\n")
 echo s # verify the constructed string
 result = parseStmt(s)

proc main =
 var o = O(x: 1.0, y: 2.0, z: 3.0)
 m1("o", x, y, z)

main()

In this example, we pass the name of our object instance as a static string to the macro, while we
pass the fields not as a string, but as a list of untyped values. The passed static string is indeed an
ordinary Nim string inside the macro, we can apply string operations on it. But the field names
passed as untyped parameters appear as so-called NimNodes inside the macro. We can use the repr()
function to convert the NimNodes to ordinary strings so that we can use string operations on
them. We iterate with a for loop over all the passed field names and generate echo() statements
from the object instance name and the field names, each separated by a newline character. Then,
all the statements are collected in a multi-line string s and are finally converted to the final AST by
the parseStmt() function. In the macro body, we use the echo() statement to verify the content of
that string. As the macro is executed during compile-time, we get this output when we compile our
program:

echo o.x
echo o.y
echo o.z

And when we run it, we get:

1.0
2.0
3.0

Well, not a really great result for this concrete use case: We have replaced three echo() commands
with a five-lines macro. But at least, you’ve got a sense of what macros can do for us.

The parseStmt() function is not actually used that often, as string construction is inconvenient, and
avoiding issues like namespace collisions can be difficult. In the following sections, we will intro
duce the quote do: construct and the genast() macro, which allows easier AST generation from tex
tual code blocks. And later, we will learn how we can create macros directly by manually AST
manipulation.

Types of macro parameters
As Nim is a statically typed programming language, all variables and procedure parameters have a
well-defined data type. There is some form of exception to this rule for OR-types, object variants,

392

and object references: OR-types are indeed no real exception. Whenever we use an OR-type as the
type of a proc parameter, multiple instances of the proc, with different parameter types, are cre
ated when necessary. That is very similar to generic procedures. Object variants and object refer
ences indeed form some kind of exception, as instances of these types can have different runtime
types that we can query with the case or of keyword at runtime. Note that object variants and ref
erences (the managed pointers themselves, not the actual data allocated on the heap) always
occupy the same amount of RAM, independent of the actual runtime type. (That is why we can store
object variants with different content or references to objects of different runtime types using
inheritance in arrays and sequences.)

For the C sqr() macro from the beginning of this section, there is no real restriction for the argu
ment data types. The sqr() C macro would work for all numeric types that support the multiply
operation, from char data type over various int types to float, double and long double. This behav
ior is not really surprising, as C macros are only a text substitution. Actually, the C pre-processor
would even accept all data types and even undefined symbols for its substitution process. But then
the C compiler would complain later.

Nim macros and Nim templates do also some form of code substitution, so it is not really surpris
ing that they accept not only well-defined data types, but also the relaxed types typed and untyped.

As parameters for Nim’s macros, we can use ordinary Nim data types like int or string, compile-
time constants denoted with the static keyword like static[int], or the typed and untyped data
types. When we call macros, then the data types of the parameters are used in the same way for
overload resolution as it is done for procedures and templates. For example, if a macro defined as
foo(arg: int) is called as foo(x), then x has to be of a type compatible with int.

What may be surprising at first is that inside the macro body, all parameter types do not have the
data type of the actual argument we have passed to the macro. Instead, they have the special
macro data type NimNode, which is defined in the ᴍᴀᴄʀos module. The predefined result variable of
the macro has the type NimNode as well. The only exceptions are macro parameters which are explic
itly marked with the static keyword to be compile-time constants like static[string], these para
meters are not NimNodes in the macro body but have their ordinary data types in the macro body.
Variables, that we define inside the macro body, have exactly the type that we give to them, e.g.
when we define a variable as s: string, then this is an ordinary Nim string variable, for which we
can use the common string operations. But of course, we have always to remember that macros are
executed at compile time, and so the operations on variables defined in the macro body occur at
compile time, which may restrict a few operations. Currently, macros are evaluated at compile-time
by the Nim compiler in the NimVM (Virtual Machine), and so share all the limitations of the
NimVM: Macros have to be implemented in pure Nim code, and can currently not call C functions,
except those that are built into the compiler.

In the Nim macros tutorial, the static, typed, and untyped macro parameters are described in some
detail. We will follow that description, as it is more detailed than the current description in the Nim
language manual. As these descriptions are very abstract, we will give some simple examples later.

Static macro parameters

Static arguments are a way to pass compile-time constants not as a NimNode, but as an ordinary
value to a macro. These values can then be used in the macro body like ordinary Nim variables. For

393

example, when we have a macro defined as m1(num: static[int]), then we can pass it constant val
ues compatible with the int data type, and in the macro body, we can use that parameter as an ordi
nary integer variable.

Untyped macro parameters

Untyped macro arguments are passed to the macro before they are semantically checked. This
means that the syntax tree, that is passed down to the macro, does not need to make sense for the
Nim compiler yet, the only limitation is, that it needs to be parsable. Usually, the macro does not
check the argument either but uses it in the transformation’s result somehow. The result of a macro
expansion is always checked by the compiler, so apart from weird error messages, nothing bad can
happen. The downside of an untyped argument is that it does not play well with Nim’s overloading
resolution. The upside for untyped arguments is, that the syntax tree is quite predictable and less
complex compared to its typed counterpart.[1]

Typed macro parameters

For typed arguments, the semantics checker runs on the argument and does transformations on it
before it is passed to the macro. Here identifier nodes are resolved as symbols, implicit type conver
sions are visible in the tree as calls, templates are expanded, and probably most importantly, nodes
have type information. Typed arguments can have the type typed in the arguments list. But all other
types, such as int, float, or MyObjectType, are typed arguments as well, and they are passed to the
macro as a syntax tree.[2]

Code blocks as arguments

In Nim, it is possible to pass the last argument of a procedure, template, or macro call as an
indented code block, following a colon, instead of an ordinary argument enclosed in the parenthe
ses following the function name. For example, instead of echo("1 + 2 = ", 1 + 2), we can also write

echo("1 + 2 = "):
 1 + 2

For procedures, this notation makes not much sense, but for macros, this notation can be useful, as
syntax trees of arbitrary complexity can be passed as arguments.

Now, let us investigate in more detail, which data types a macro accepts. This way we hopefully get
more comfortable with all these strange macro stuff. For our test, we create a few tiny macros, each
with only one parameter, doing nothing more than printing a short message when we compile our
program:

import std/macros

macro m1(x: static[int]): untyped =
 echo "executing macro body"

m1(3)

394

This code should compile fine, and print the message "executing macro body" during the compile
process, and indeed, it does. The next example is not that easy:

import std/macros

macro m1(x: int): untyped =
 echo "executing macro body"
 echo x
 echo x.repr

var y: int
y = 7
m1(y)

This compiles, but as the assignment y = 7 is executed at program runtime, while the macro body is
already executed at compile-time, we should not expect that the echo() statement in the macro body
prints the value 7. Instead, we get just y for both echo() calls. Now, let us investigate what happens
when we use typed instead of int for the macro parameter:

import std/macros

macro m1(x: typed): untyped =
 echo "executing macro body"
 echo x
 echo x.repr

var y: int
y = 7
m1(y)

We get the same result again, both echo() statements print y. The advantage of the use of typed here
is, that we can change the data type of y from int to float, and our program still compiles. So the
typed parameter type just enforces that the parameter has a well-defined type, but it does not
restrict the actual data type to a special value. The previous macro, with int parameter type, would
obviously not accept a float value.

Now, let us see what happens when we pass an undefined symbol to this macro with typed parame
ter:

import std/macros

macro m1(x: typed): untyped =
 echo "executing macro body"
 echo x
 echo x.repr

m1(y)

395

This will not compile, as the macro expects a parameter with a well-defined type. But we can make
it compile by replacing typed with untyped:

import std/macros

macro m1(x: untyped): untyped =
 echo "executing macro body"
 echo x
 echo x.repr

m1(y)

So untyped macro parameters are not only the most flexible but also the most commonly used. How
ever, in some situations, it is necessary to use typed parameters, e.g., when we need to know the
parameter type in the macro body.

Quote and the quote do: construct
In the section before, we learned about the parseStmt() function, which is used in a macro body to
compile Nim code represented as a multi-line string to an abstract syntax tree representation.
Macros use as a return type the "untyped" data type, which is compatible with the NimNode type
returned by the parseStmt() function.

The quote() function and the quote do: construct have some similarity with the parseStmt() func
tion: They accept an expression or a block of Nim code as an argument and compiles that Nim code
to an abstract syntax tree representation. The advantage of quote() is, that the passed Nim code can
contain NimNode expressions from the surrounding scope. The NimNode expressions have to be quoted
using backticks.

As a first very simple example for the use of the quote do: construct, we will present a way to print
some debugging output.

Assume we have a larger Nim program, which works not in the way that we expected, so we would
add some echo() statements like

var currentSpeed: float = calcSpeed(t)
echo "currentSpeed: ", currentSpeed

Instead of the echo() statement, we would like to just write show(currentSpeed) to get exactly the
same output. For that, we need access not only to the actual value of a variable, but also to its name.
Nim macros can give us this information, and by using the quote do: construct, it is very easy to cre
ate our desired showMe() macro:

import std/macros

macro show(x: untyped): untyped =
 let n = x.toStrLit

396

 result = quote do:
 echo `n`,": ", `x`

import std/math
var a = 7.0
var b = 9.0
show(a * sqrt(b))

When we compile and run that code, we get:

a * sqrt(b): 21.0

In the macro body, we use the proc toStrLit() from the ᴍᴀᴄʀos module, which is described with this
comment: "Converts the AST n to the concrete Nim code and wraps that in a string literal node" So
our local variable n in the macro body is a NimNode, that now contains the string representation of
the macro argument x. We use the NimNode n enclosed with backticks in the quote do: construct. It
seems, that writing this macro was indeed not that difficult, but actually, it was only that easy
because we have basically copied the dump() macro from the sᴜɢᴀʀ module of Nim’s standard
library.

Let us investigate our show() macro in some more detail, to learn more about the inner working of
Nim macros. First, recall that macros always have a return value of data type untyped, which is actu
ally a NimNode. The quote do: construct gives us a result which we can use as the return value of our
macro. Sometimes, we may see macros with no result type at all, which is currently identical to the
untyped result type. As the macro body is executed at compile-time, the quote do: construct is exe
cuted at compile-time as well, that is that the code block which we pass to the quote do: construct is
processed at compile-time and the quoted NimNodes in the block are interpolated at compile-time.
For our program from above, the actual echo() statement in the block is then finally executed at
program runtime. To prove how this final echo() statement looks, we may add as the last line of our
macro the statement "echo result.repr" and we would then get the string "echo "a * sqrt(b)", ": ", a
* sqrt(b)", when we compile our program again.

You may wonder why the construct "quote do:" is used instead of only "quote:". The "do notation" is
an overloaded feature of the Nim language and offers two things:[3]

• A different way to pass anonymous procs/closures to a procedure

• A way to pass two code blocks to a template.

We will not try to explain the magic of "do" here in more detail, because there have been sugges
tions to modify its use and meaning, and because modern Nim provides the new genAst() macro,
which can replace "quote do" and is preferred by many people now. We will present that macro in
the next section. When you are really interested in the details of the "do" notation, you may read
these two forum posts:

• https://forum.nim-lang.org/t/8259#53154

• https://forum.nim-lang.org/t/8279#53301

397

https://forum.nim-lang.org/t/8259#53154
https://forum.nim-lang.org/t/8279#53301

The genast() macro as a replacement for quote do:
The ɢᴇɴᴀsᴛs module provides the genAstOpt() macro and the genAst() template as a drop-in replace
ment for the "quote do:" construct. Like quote do:, genAst() accepts an expression or a code block
and returns the AST that represents it. Within the quoted AST, we are able to interpolate NimNode
expressions from the surrounding scope. While for quote do: quoting is done using backticks (or
other user-defined delimiters), we pass to genAst() a list of the variables to capture, and can then
use these variables in the body of genAst() without explicit quoting. Using genAst(), our show()
macro from above becomes:

import std/[macros, genasts]

macro show(x: untyped): untyped =
 let n = x.toStrLit
 genAst(x, n):
 echo n, ": ", x

import std/math
var a = 7.0
var b = 9.0
show(a * sqrt(b))

GenAst() captures (interpolates) parameters of the surrounding macro and local macro variables
when we specify them as parameters to genAst(). A macro local procedure is automatically cap
tured and does not have to be included in the capture list explicitly. This behavior can be modified,
when instead of the plain genAst(), the genAstOpt() macro is used, which has a set of options as a
first parameter. You can find some more details about the ɢᴇɴᴀsᴛs module and two larger examples
for its use in the API documentation of that module.

References:

• https://nim-lang.github.io/Nim/genasts.html

• https://github.com/nim-lang/Nim/pull/17426

Building the AST manually
In the three sections before we used the functions parseStmt(), quote() and genAst() to build the AST
from a textual representation of Nim code. That can be convenient, but is not very flexible. In this
section, we will learn how we can build a valid AST from scratch by calling functions of the ᴍᴀᴄʀos
module. That is not that easy, but this way we have the full power of the Nim meta-programming
available.

Luckily, the ᴍᴀᴄʀos module provides some macros like dumpTree() and dumpAstGen(), which can
help us get started. We will create again a macro similar to the show() macro, that we created
before with the quote do: construct, but now with elementary instructions from the ᴍᴀᴄʀos mod
ule. This may look a bit boring, but this plain example is already complicated enough for the begin
ning, and it shows us the basics to construct much more powerful macros later.

398

https://nim-lang.github.io/Nim/genasts.html
https://github.com/nim-lang/Nim/pull/17426

The core code of our debug() macro would look in textual representation like

var a, b:int
echo "a + b", ": ", a + b

That is for debugging we would like to print an expression first in its string representation, and
separated by a colon, the evaluated expression. The dumpTree() macro can show us how the Nim
syntax tree for such a print debug statement should look:

import std/macros

var a, b: int

dumptree:
 echo "a + b", ": ", a + b

When we compile this code, we get as output:

 StmtList
 Command
 Ident "echo"
 StrLit "a + b"
 StrLit ": "
 Infix
 Ident "+"
 Ident "a"
 Ident "b"

The Nim syntax tree for the previously mentioned echo() statement is a statement list consisting of
an echo() command with two string literal arguments and a last argument which is built with the
infix + operator and the two arguments a and b. We can see how the AST, which we would have to
construct, should look, but we still do not know how we could construct such an AST in detail. Well,
the ᴍᴀᴄʀos module would contain the functions that we need for that, but it is not easy to find the
right functions there. The dumpAstGen() macro can list us exactly the needed functions:

import std/macros

var a, b: int

dumpAstGen:
 echo "a + b", ": ", a + b

Compiling that code gives us:

399

 nnkStmtList.newTree(
 nnkCommand.newTree(
 newIdentNode("echo"),
 newLit("a + b"),
 newLit(": "),
 nnkInfix.newTree(
 newIdentNode("+"),
 newIdentNode("a"),
 newIdentNode("b")
)
)
)

This is a nested construct. The most outer instruction constructs a new tree of Nim Nodes with the
node type statement list. The next construct creates a tree with node kind command, which again
contains the ident node with name echo, which again contains two literals and the infix + operator.

We can use the output of the dumpAstGen() macro directly to create a working Nim program:

import std/macros

var a, b: int

#dumpAstGen:
echo "a + b", ": ", a + b

macro m(): untyped =
 nnkStmtList.newTree(
 nnkCommand.newTree(
 newIdentNode("echo"),
 newLit("a + b"),
 newLit(": "),
 nnkInfix.newTree(
 newIdentNode("+"),
 newIdentNode("a"),
 newIdentNode("b")
)
)
)

m()

When we compile and run that code, we get the output:

a + b: 0

So the AST from above is fully equivalent to the one-line echo() statement. But now we would have

400

to investigate how we can pass an actual expression to our macro, and how we can use that passed
argument in the macro body — first, print its textual form, and then the evaluated value, separated
by a colon. There is one more problem: the previously mentioned nested macro body is not really
useful for our final dump() macro, as we would like to be able to construct the NimNode that is
returned by the dump() macro step by step: Add the echo() command, then the passed expression in
string form, and finally the evaluated expression. So let us first rewrite the above macro in a form
where the AST is constructed step by step. That may look difficult, but when we know that we can
call the newTree() function with only one node kind parameter to create an empty tree of that kind
and that we can later use the overloaded add() proc to add new nodes to that tree, then it is easy to
guess how we can construct the macro body:

import std/macros

var a, b: int

#dumpAstGen:
echo "a + b", ": ", a + b

macro m(): untyped =
 nnkStmtList.newTree(
 nnkCommand.newTree(
 newIdentNode("echo"),
 newLit("a + b"),
 newLit(": "),
 nnkInfix.newTree(
 newIdentNode("+"),
 newIdentNode("a"),
 newIdentNode("b")
)
)
)

macro m2(): untyped =
 result = nnkStmtList.newTree()
 let c = nnkCommand.newTree()
 let i = nnkInfix.newTree()
 i.add(newIdentNode("+"))
 i.add(newIdentNode("a"))
 i.add(newIdentNode("b"))
 c.add(newIdentNode("echo"))
 c.add(newLit("a + b"))
 c.add(newLit(": "))
 c.add(i)
 result.add(c)

m2()

First, we create the three empty tree structures of node kinds statement list, command, and infix
operator. Then we use the overloaded add() proc to populate the trees, using procs like newIdentN

401

ode() or newLit() to create the nodes of matching types as before. When we run our program with
the modified macro version m2(), we get again the same output:

a + b: 0

The next step to create our actual dump() macro is again easy — we pass the expression to dump()
as an untyped parameter to the macro, convert it to a NimNode of string type, and use that instead of
the previously mentioned newLit("a + b"). In our second macro, where we used the quote do: con
struct, we applied already toStrLit() on an untyped macro parameter, so we should be able to reuse
that to get the string NimNode. Instead, we would have to apply the stringify operator additionally on
that value. But a simpler way is to just apply repr() on the untyped macro argument to get a NimNode
of string type. And finally, to get the value of the evaluated expression in our dump() macro, we
add() the untyped macro parameter directly in the command three — that value is evaluated when
we run the macro generated code.

import std/macros

var a, b: int

macro m2(x: untyped): untyped =
 var s = x.toStrLit
 result = nnkStmtList.newTree()
 let c = nnkCommand.newTree()
 c.add(newIdentNode("echo"))
 c.add(newLit(x.repr))
 #c.add(newLit($s))
 c.add(newLit(": "))
 c.add(x)
 result.add(c)

m2(a + b)

Again, we get the desired output:

 a + b: 0

So, our dump() macro, still referred to as m2(), is complete and can be used to debug arbitrary
expressions. Note, that this macro works for arbitrary expressions, not only for numerical ones. We
may use it like

m2(a + b)
let what = "macros"
m2("Nim " & what & " are not that easy")

and get the output

402

a + b: 0
"Nim " & what & " are not that easy": Nim macros are not that easy

Now, let’s extend our debug() macro so that it can accept multiple arguments. The needed modifica
tions are minimal; we simply pass an argument of type varargs[untyped] to the debug macro
instead of a single untyped argument, and iterate in the macro body with a for loop over the varargs
argument:

import std/macros

macro m2(args: varargs[untyped]): untyped =
 result = nnkStmtList.newTree()
 for x in args:
 let c = nnkCommand.newTree()
 c.add(newIdentNode("echo"))
 c.add(newLit(x.repr))
 c.add(newLit(": "))
 c.add(x)
 result.add(c)

var
 a = 2
 b = 3
m2(a + b, a * b)

When we compile and run that code, we get:

a + b: 5
a * b: 6

The assert macro
As one more simple example, we will show how we can create our own assert() macro. The assert()
has only one argument, which is an expression with a boolean result. If the expression evaluates to
true at program runtime, then the assert() macro should do nothing. But when the expression eval
uates to false, then this indicates a serious error and the macro shall print the expression which
evaluated to false and then terminate the program execution. This is basically what the assert()
macro in the Nim standard library already does, and the official Nim macros tutorial contains such
an assert() macro as well.

Arguments for our assert() macro may look like "x == 1 + 2", containing one infix operator, and
one left-hand, and one right-hand operand. We will show how we can use subscript [] operators on
the NimNode argument to access each operand.

As a first step, we use the treeRepr() function from the ᴍᴀᴄʀos module, to show us the Nim tree
structure of a boolean expression with an infix operator:

403

import std/macros

macro myAssert(arg: untyped): untyped =
 echo arg.treeRepr

let a = 1
let b = 2

myAssert(a != b)

When we compile that program, the output of the treeRepr() function shows us that we have passed
an infix operator with two operands at index positions 1 and 2 as an argument.

Infix
 Ident "!="
 Ident "a"
 Ident "b"

Now, let us create an assert() macro, which accepts such a boolean expression with an infix opera
tor and two operands:

import std/macros

macro myAssert(arg: untyped): untyped =
 arg.expectKind(nnkInfix) # NimNodeKind enum value
 arg.expectLen(3)
 let op = newLit(" " & arg[0].repr & " ") # operator as string literal NimNode
 let lhs = arg[1] # left hand side as NimNode
 let rhs = arg[2] # right hand side as NimNode
 result = quote do:
 if not `arg`:
 raise newException(AssertionDefect,$`lhs` & `op` & $`rhs`)

let a = 1
let b = 2

myAssert(a != b)
myAssert(a == b)

The first two function calls, expectKind() and expectLen(), verify that the macro argument is indeed
an infix operator with two operands, that is, the total length of the argument is 3. The symbol nnk
Infix is an enum value of the NimNodeKind data type defined in the ᴍᴀᴄʀos module — that module fol
lows the convention to prepend enum values with a prefix, which is nnk for NimNodeType in this case.
In the macro body, we use the subscript operator [0] to access the operator and then apply repr()
on it to get its string representation. Further, we use the subscript operators [1] and [2] to extract
the two operands from the macro argument and store the result each in a NimNode lhs and rhs.
Finally, we create the quote do: construct with its indented multi-line string argument and the

404

interpolated NimNode values enclosed in backticks. The block after the quote do: construct checks, if
the passed arg macro argument evaluates to false at runtime, and raises an exception, in that case,
displaying the reconstructed argument.

We have to admit that this macro is not really useful in real life, as it is restricted to simple boolean
expressions with a single infix operator. And what it does in its body doesn’t make much sense: The
original macro argument is split into three parts, the infix operator and the two operands, which
are then just joined again to show the exception message. But at least we have learned how we can
access the various parts of a macro argument by using subscript operators, how we can use the
treeRepr() function from the ᴍᴀᴄʀos module to inspect a macros argument, and how we can ensure
that the macro argument has the right shape for our actual macro by applying functions like
expectKind() and expectLen() early in the macro body.

Pragma macros
All macros and templates can also be used as pragmas. They can be attached to routines (proce
dures, iterators, etc.), type names, or type expressions. In this section, we will show a small exam
ple, of how a proc pragma can be used to print the proc name whenever a procedure annotated
with that pragma is called:

import std/macros

dumpAstGen: # let us see how the NimNode for an echo statement has to look
 proc test(i: int) =
 var thisProcName = "test"
 echo thisProcname
 echo 2 * i

macro pm(arg: untyped): untyped = # a pragma macro
 expectKind(arg, nnkProcDef) # assert that macro is applied on a proc
 let node = nnkCommand.newTree(newIdentNode("echo"), newLit($name(arg)))
 insert(body(arg), 0, node)
 result = arg

proc myProc(i: int) {.pm.} =
 echo 2 * i

proc main =
 myProc(7)

main()

We start with the dumpAstGen() macro applied to a test() proc, which contains an echo() statement.
So when we compile that code, we get an initial idea of how a NimNode, which should print the proc
name, should look. To use pragma macros, we annotate the proc with the macro name enclosed in
the pragma symbols {..}. The annotated procedure is then passed to the pragma with that name in
the form of a syntax tree. Our goal is to add a NimNode to this tree, which prints the procedure name
of the passed AST. To do that, we have to know two important points: For the proc that is passed as

405

an untyped data type to our macro, we can use the function body() to get the AST representation of
the body of the passed proc, and we can use name() to get the name of that proc. The functions
body() and name() are provided by the ᴍᴀᴄʀos module of Nim’s standard library. In our macro
pm(), we first verify that the passed argument is really of node kind ProcDef. Then we create a new
NimNode, which calls the echo() function with the procedure name as a parameter. And we insert
that node at position 0 into the body of the passed proc. Finally, we return the modified AST.

When we run our program, we get this output in the terminal window:

$./t
myProc
14

Pragma macros for iterators
Let’s assume we have an object type with some fields, all of which are sequences with the same
base type, and we need an iterator to iterate over all the container elements. Indeed, this may hap
pen when the different seqs contain subclasses of the same parent class, as in

type
 Group = ref object of Element
 lines: seq[Line]
 circs: seq[Circ]
 texts: seq[Text]
 rects: seq[Rect]
 pads: seq[Pad]
 holes: seq[Hole]
 paths: seq[Path]
 pins: seq[Pin]
 traces: seq[Trace]

iterator items(g: Group): Element =
 for el in g.lines:
 yield el
 for el in g.rects:
 yield el
 for el in g.circs:
 yield el

Perhaps we do not want to write all the for loops in the iterator body manually. One solution is to
create a pragma macro, which creates the for loops in the iterator body for us:

import std/macros

type
 O = object

406

 a, b, c: seq[int]

macro addItFields(o: untyped): untyped =
 const fields = ["a", "b", "c"]
 expectKind(o, nnkIteratorDef)
 # echo o.treeRepr
 # echo o.params.treeRepr
 let objName = o.params[1][0]
 for f in fields:
 let node =
 nnkStmtList.newTree(
 nnkForStmt.newTree(
 newIdentNode("el"),
 nnkDotExpr.newTree(
 #newIdentNode("o"),
 newIdentNode($objName),
 # newIdentNode("b")
 newIdentNode(f)
),
 nnkStmtList.newTree(
 nnkYieldStmt.newTree(
 newIdentNode("el")
)
)
)
)
 insert(body(o), body(o).len, node)
 result = o
 #echo result.repr

iterator items(o: O): int {.addItFields.} =
 discard

#dumpAstGen:
iterator xitems(o: O): int =
for el in o.a:
yield el

var ox: O
ox.a.add(1)
ox.b.add(2)
ox.c = @[5, 7, 11, 13]

for l in ox.items:
 echo l

We start again with a dumpAstGen() call, which shows us the shape of the for loop node. In that
node, we only have to replace two newIdentNode() calls so that the field names can be provided by
iterating over an array of strings, and the object name is taken from the iterator parameter. To get
the object name, we first use o.treeRepr, to see the whole parameter structure, and then

407

params.treeRepr, to get the structure of the parameters passed to our iterator. Using subscript
operators, we get the actual object name. We insert each new node, that we create in the for loop
with a call of insert(body(o), body(o).len, node), as the new last node in the body of the iterator. We
can create a more flexible variant of our above macro when we pass the actual field names as addi
tional parameters to the pragma macro:

import std/macros

type
 O = object
 a, b, c: seq[int]

macro addItFields(fields: openArray[string]; o: untyped): untyped =
 expectKind(o, nnkIteratorDef)
 let objName = o.params[1][0]
 for f in fields:
 let node =
 nnkStmtList.newTree(nnkForStmt.newTree(newIdentNode("el"),
 nnkDotExpr.newTree(newIdentNode($objName),newIdentNode($f)),
 nnkStmtList.newTree(nnkYieldStmt.newTree(newIdentNode("el")))))
 insert(body(o), body(o).len, node)
 result = o

iterator items(o: O): int {.addItFields(["a", "b", "c"]).} =
 discard

var ox: O
ox.a.add(1)
ox.b.add(2)
ox.c = @[5, 7, 11, 13]

for l in ox.items:
 stdout.write l, ' '

When we run this macro or the one before, we get

1 2 5 7 11 13

Macros for generating data types
As one more exercise for the use of macros, we will create some data types in this section. In the
previous section, we had a data type like

type
 Group = ref object of Element
 lines: seq[Line]
 circs: seq[Circ]

408

 texts: seq[Text]
 rects: seq[Rect]
 pads: seq[Pad]
 holes: seq[Hole]
 paths: seq[Path]
 pins: seq[Pin]
 traces: seq[Trace]

Here, the individual fields have a well-defined shape — all members are sequences of other data
types, and the field names are derived from the type names. We may wonder if creating the fields
with some form of a macro would make sense. Let’s investigate this.[4] Let us assume that we need a
reference object with some fields that are sequences of the base types int, float, and string. Again,
we start by using the dumpAstGen() macro. We don’t have to understand its output in detail. It is
enough to recognize that each of the three actual fields of our ref object was created by a nnkI
dentDefs.newTree() statement, and that these three statements are surrounded by a nnkRe
cList.newTree() call. So we start by producing an empty RecList with a call of nnkRecList.newTree(),
and then iterate over an array with the three type names, create the IdentDefs with nnkIdent
Defs.newTree() and add them to the RecList. Finally, we call nnkStmtList.newTree() passing our
RecList as a parameter. Mostly this is just copy&paste, with the only exception that we have to
remember that our rfn variable, which we use to iterate over the type names, is not a string, but a
NimNode inside the macro, so we have to apply the stringify operator $ on it when we pass it as an
argument to newIdentNode():

type
 O = ref object of RootRef
 ints: seq[int]
 floats: seq[float]
 strings: seq[string]

import std/macros
#[
dumpAstGen:
 type
 O1 = ref object of RootRef
 ints: seq[int]
 floats: seq[float]
 strings: seq[string]
]#

#[
nnkStmtList.newTree(
 nnkTypeSection.newTree(
 nnkTypeDef.newTree(
 newIdentNode("O1"),
 newEmptyNode(),
 nnkRefTy.newTree(
 nnkObjectTy.newTree(
 newEmptyNode(),
 nnkOfInherit.newTree(

409

 newIdentNode("RootRef")
),
 nnkRecList.newTree(
 nnkIdentDefs.newTree(
 newIdentNode("ints"),
 nnkBracketExpr.newTree(
 newIdentNode("seq"),
 newIdentNode("int")
),
 newEmptyNode()
),
 nnkIdentDefs.newTree(
 newIdentNode("floats"),
 nnkBracketExpr.newTree(
 newIdentNode("seq"),
 newIdentNode("float")
),
 newEmptyNode()
),
 nnkIdentDefs.newTree(
 newIdentNode("strings"),
 nnkBracketExpr.newTree(
 newIdentNode("seq"),
 newIdentNode("string")
),
 newEmptyNode()
)
)
)
)
)
)
)
]#

const RecFieldNames = ["int", "float", "string"]
macro genO1(): untyped =
 var recList = nnkRecList.newTree()
 for rfn in RecFieldNames:

 recList.add(nnkIdentDefs.newTree(newIdentNode($rfn & 's'),
 nnkBracketExpr.newTree(newIdentNode("seq"),
 newIdentNode($rfn)), newEmptyNode()))

 result = nnkStmtList.newTree(nnkTypeSection.newTree(nnkTypeDef.newTree(newIdentNode
("O1"),
 newEmptyNode(), nnkRefTy.newTree(nnkObjectTy.newTree(newEmptyNode(),
 nnkOfInherit.newTree(newIdentNode("RootRef")), nnkRecList.newTree(recList))))))

genO1()

410

var o1 = O1(ints: @[1, 2, 3], floats: @[0.1, 0.2, 0.3], strings: @["seems", "to",
"work"])
echo o1.ints
echo o1.floats
echo o1.strings

When we compile and run the above code, we get an output that seems to make some sense. But
can we really trust our macro? Well, we can replace var o1 = O1 with var o1 = O and compile and
run again: At least we get the same file size, and the same output, so our macro should be fine.

Macros to generate new operator symbols
Earlier in the book, we have already learned how we can define new procs and templates, which
can be used as operators. In this section, we will learn how we can create a macro that does not
only create an operator that can work on existing variables, but also can be used to create new
variables. In Nim, we use the var or let keyword to create new variables. Some other languages
allow creating new variables on the fly by using just "=", ":=", or "!=" for the assignment.

import std/macros

dumpAstGen:
 var xxx: float

macro `!=`(n, t: untyped): untyped =
 let nn = n.repr
 let tt = t.repr
 nnkStmtList.newTree(
 nnkVarSection.newTree(
 nnkIdentDefs.newTree(
 # newIdentNode("xxx"),
 newIdentNode(nn),
 # newIdentNode("float"),
 newIdentNode(tt),
 newEmptyNode()
)
)
)

proc main =
 myVar != int
 myVar = 13
 echo myVar, " ", typeof(myVar)

main()

Again, dumpAstGen() shows us the structure of the needed AST. We use repr() to get the string rep
resentation of the two macro arguments, and in the dumpAstGen() output, we replace the argu
ments of the newIdentNode() calls with those values. When we compile and run the above pro

411

gram, we get

$./t
13 int

In the case that we should really intend to use such a macro in our own code, we should of course
add some code to the macro, to check that the passed arguments have the correct content.

References:

• https://nim-lang.org/docs/manual.html#macros

• https://nim-lang.org/docs/tut3.html

• https://nim-by-example.github.io/macros/

• https://hookrace.net/blog/introduction-to-metaprogramming-in-nim/

• https://flenniken.net/blog/nim-macros/

• https://dev.to/beef331/demystification-of-macros-in-nim-13n8

[1] This definition is from the Nim macros tutorial, written by A. Doering, a former paid core developer for Nim.

[2] This definition is from the Nim macros tutorial, written by A. Doering, a former paid Nim core developer

[3] https://forum.nim-lang.org/t/8259#53165

[4] You may wonder why we have separate sequences for the geometric shapes at all here, as we could put all the shapes in a single
seq when the shape types are reference types. Well, the shapes types could be value types, so that we can not store them all in a
single seq. Or, even when the base types are all references, we may intend to draw and print them in a well-defined order, and that
is typically easier and faster when they are ordered by shape in different sequences.

412

https://nim-lang.org/docs/manual.html#macros
https://nim-lang.org/docs/tut3.html
https://nim-by-example.github.io/macros/
https://hookrace.net/blog/introduction-to-metaprogramming-in-nim/
https://flenniken.net/blog/nim-macros/
https://dev.to/beef331/demystification-of-macros-in-nim-13n8
https://forum.nim-lang.org/t/8259#53165

Process execution
In this section, we will discuss how we can use multiple threads or Nim’s async/await framework,
to avoid blocking IO (input/output) operations, and to enable parallel code execution on multiple
physical CPU cores. The various forms of not strictly linear and sequential program execution are
also called multitasking or multi-threading. Threading is generally the splitting of one path of
actions into various sub-parts, which can be processed in parallel, or concurrently. On a CPU with
multiple physical cores, threads can be distributed between them, while on a CPU with only one
core, all threads have to run obviously alternating on that single core, which is called concurrency.
Parallel processing requires always dedicated physical hardware, that is multiple CPUs, or a multi
core CPU, which consists of two or more independent units known as cores.

As the CPUs of recent desktop computers often already have a few dozen cores, and GPUs may have
thousands of them, it has become more and more important to distribute computing tasks between
all these cores to gain optimal performance. Dedicated programming languages like Chapel or Pony
have been developed for this task, and most modern programming languages support it. For older
languages like C, extensions like OpenMP for threading support have been developed.

The various forms of asynchronous operation were introduced due to the fact that some input and
output operations and network requests can be very slow compared to the data processing rate of
the CPU. It would be very wasteful if the CPU had to remain idle while a slow network data transfer
or a floppy disk operation is performed. Actually, the asynchronous operation was already done
long before the first multicore CPUs were available.

While Nim has already good support for threading and asynchronous and parallel processing, all
this is still some work in progress, so things may further improve in the future.

When we launch a computer program on our desktop PC, then the operating system creates an
instance of a new process, sometimes also called a task, to execute the application. Each process is
strongly separated from other processes that may also be running on the computer, each process
has its own memory regions (RAM) that it may use, and when one process should crash for some
reason, other processes are not concerned. Processes can have various states defined by the OS, this
includes some form of running, idle, ready, waiting, or halted. A process executes one or multiple
threads, which can run concurrent, or parallel on multiple physical CPU cores. All the threads of
one single process can use common resources and access common variables, which enables data
exchange between threads, with some restrictions. Data exchange between different, separated
processes is not that easy, but it is also possible with the use of inter-process-communication proto
cols. Early PC operating systems executed only one process at a time, sometimes the user was able
to switch between multiple launched processes. Modern operating systems do a fast switching
between all the ready processes so that the user gets the feeling, that all of them are running in par
allel, even when the CPU has only one physical core. The fast switching between processes is called
multitasking or concurrent execution. Unfortunately, these two terms are a bit misleading, as they
seem to imply true parallel execution on multiple physical CPU cores. But the term concurrency
actually only indicates the fast switching process — for a few micro-second one process is executed,
then an automatic task switch occurs, which includes saving and restoring all the CPU registers and
states, and the next process is executed again for a few micro-seconds. This form of concurrency
was already big progress for the desktop PC, as it was possible to run processes with a heavy work
load, like a compiler, while the user was still able to use his text editor or web browser without

413

noticing serious delays for key and mouse input or display updates. Concurrency is typically sup
ported by smart hardware, which can interrupt the current work of the CPU to temporarily execute
a different code segment. Hardware like disc controllers, or network cards, have its own data
buffers or can access parts of the RAM directly by DMA (Direct Memory Access), and notice the CPU
by so-called interrupt signals when a buffer is full (or empty) or when another condition is met, e.g.
when new network data are available. This interrupt system can drastically improve performance
and throughput, as active waiting in polling busy loops for new network or disk data can be
avoided — the CPU is free to process one of the other waiting processes until interrupt signals indi
cate filled/empty data buffers or other conditions that require active CPU intervention.

This form of (hardware interrupt-driven) concurrency needs generally some software support, e.g.
the Linux kernel may use the epoll system for I/O event notifications. Initially, it was a common
practice to connect so-called callback functions to interrupt-driven signals, e.g. a callback function
was invoked whenever some network data package arrived. Some C programs and system libraries
work still this way, for example, the glib library of the GTK GUI toolkit. But the use of callbacks can
become difficult and confusing for large applications, sometimes it was called a "callback hell". So
languages like Java, JavaScript, or Python introduced a framework called async/await to simplify
the process of writing non-blocking asynchronous software. The async/await framework actually
hides the use of callbacks or use of system functions like epoll from the user. This asynchronous
programming style has gained some popularity due to the fact that many programs perform a lot of
network communication, where data is transferred often slowly, compared to the processing power
of the CPU. The Nim standard library provides an async/await framework, which can be used simi
larly to that of Python, and the external Chronos package of Status corp. offers one more similar
package. Additionally, there was a discussion among some Nim developers to support or replace the
async/await framework with a more flexible CPS-based one. We should mention, that async/await
has its drawbacks — its internal working is difficult, its usage is not always easy, and the user has to
be careful when using asynchronous and synchronous functions together. Async/await was defi
nitely the best option when desktop PCs had only one single CPU core, but with the arrival of multi
core CPUs, the importance of asynchronous operations has become less important, as using many
threads running in parallel has become an alternative solution. It is said, that asynchronous pro
gram execution has less overhead than just using parallel processing on multiple cores, which
could be one reason, why asynchronous programming is still very popular.

Note that Nim’s async/await framework is not a direct component of the Nim language but is
provided by libraries, which are created by use of Nim’s macro and meta-programming
capacities. While the async/await system of the standard library does not support parallel
execution directly but is executed only on a single thread, it is generally possible to use
async/await with threads running in parallel. As an example of that, you may see
https://github.com/dom96/httpbeast.

For Nim, we have many different ways to do parallel program execution, and for the async/await
framework of Nim’s standard library, the Chronos alternative implementation is available. Creating
new threads, which are executed in parallel, when the CPU has multiple physical cores, is sup
ported by the ᴛʜʀᴇᴀᴅs module. Additionally, the Nim standard library provides the ᴛʜʀᴇᴀᴅᴘooʟ
module, which can create a pool of threads, which may be used by the spawn construct or the par
allel keyword. Furthermore, external packages, like weave, can be used for high-performance paral
lel processing. And finally, when we use the C compiler backend, we may also use the parallel con

414

https://github.com/dom96/httpbeast

struct of the OpenMP C library.

Some other programming languages like Lua or Go offer also virtual (green) threads, or coroutines
and fibers, and some languages use the CPS system for a very flexible parallel and asynchronous
framework. Maybe Nim will support that also in the future.

The biggest problem of high-performance parallel data processing is the exchange of data between
threads, which has to be performed with much care to avoid data corruption by uncoordinated ran
dom access or race conditions. For this, mutexes, locks, and atomic operations can be used to con
trol the access of common variables, or Channels can be used to send data from one thread to
another one. Another problem for parallel thread execution can result from the Garbage Collector.
For a system design, where a single GC accesses all data of a process, it can be necessary to stop all
the threads of a process while the GC does its work. Nim is using for each thread a separate heap
area and a thread-local GC, so other threads can continue their work while the GC cleans up the
data of one single thread. The concern of passing data between threads still exists, but the new
ARC/ORC memory management system may further improve the situation.

In the following sections of the book, we will first demonstrate a few ways to use multiple threads,
which will run in parallel, when there is more than one physical CPU core available. After that, we
will investigate basic async/await operations, and show how we can send data from one thread to
another by use of the ᴄʜᴀɴɴᴇʟs module.

Note: Whenever we intend to use threads in Nim, that is when we import the threadpool or
the ᴛʜʀᴇᴀᴅs module, we have to compile our program with the option --threads:on. This will
be the default for Nim v2.0.

Module threadpool
Creating new threads is always some overhead, so it can make sense to create a pool of threads,
which we then can use to execute parts of our program.

Using spawn to execute a proc by one thread of the pool

As a first, very simple example, we will show how we can use the spawn procedure of the ᴛʜʀᴇᴀᴅ
ᴘooʟ module to request the execution of a regular procedure. This way, we create not really a new
thread, but we add our proc to a list of procs to execute. When one of the threads in the pool is idle,
then our procedure is immediately executed by a thread, otherwise, the execution of our proc is
delayed until a thread is ready to execute it. All the threads of the pool are distributed among the
physical cores of the CPU, so we can really execute procs in parallel. We have to compile the code
using spawn() with the --d:threads=on option:

import std/threadpool
proc sum(i: int): int =
 var j = 0
 while j < i:
 inc(j)
 result += j

415

proc main =
 var a: FlowVar[int] = spawn sum(1e7.int)
 var b = spawn sum(1e7.int)
 echo ^a , " ", ^b

main()

The spawn() function executes an ordinary Nim function by a thread of the pool. Note that syntacti
cally, we do not pass a function and the function’s arguments to spawn, but an expression which is
the actual call of the proc! Spawn() immediately returns a variable of FlowVar[T] type, which is a
container type that can store the result of our passed function. In the example above, we used Flow
Var[int], as our proc sum returns an integer value, but of course, the generic FlowVar[T] type works
for other data types as well, including sequence and object types. As the instances of FlowVar[T]
type are immediately returned by spawn(), these container variables may be empty initially. We
may then use functions like isReady() from the ᴛʜʀᴇᴀᴅᴘooʟ module, to test if the FlowVar[T] variable
contains already the result data, or we can do a blocking wait for the result of our proc with the ^
operator. The ^ operator applied to the FlowVar[T] variable waits for the thread to finish the execu
tion of our proc and then returns the actual result. If the thread is already finished when we apply
the ^ operator, we get the result immediately. As ^ does a blocking wait, it may look as if there
would not be many benefits, but of course, we can launch a number of threads with spawn, which
can be processed in parallel, and then we wait with ^ on all the results.

In the example above, we use a plain procedure, which sums up the first i natural numbers, very
similar to our very first example program in Part I of the book. We use spawn() to launch two
instances of that procedure, and then wait for the results with the ^ operator applied to the flowvar.
If your PC has more than one physical CPU core, then both procedure instances should be running
in parallel, taking only the total time of one single run. You may compile and launch the above code
with nim c --threads:on t.nim; time ./t to see the execution time. Then, comment out the second
spawn call as well as the echo() call for FlowVar b and compile and run again. Times should be
nearly identical, when your PC has at least two CPU cores, indicating true parallel execution. Of
course, launching multiple times the same procedure with the same data makes not much sense,
but in real life, we could launch it with different data, or we could use different procedures.

As one more example of the use of spawn(), let us investigate, how we can avoid the blocking
behavior of the readLine() procedure, that we used earlier in the book. Without special care, a call
of readLine() blocks the main thread of our process, so our program would not be able to do some
useful work or update the display until the user terminates his textual input request by pressing the
return key. One possible option to avoid a blocking request for user input could be the use of the
async/await framework, but that may not work well for the current Nim implementation. So let us
just use spawn to execute readLine() on one of the threads of the pool:

import std/threadpool
from std/os import sleep
proc doSomeWork =
 echo "not really working that hard..."
 sleep(1000) # sleep 1000 ms

416

proc main =
 var userInput: FlowVar[string] = spawn readLine(stdin)
 while not userInput.isReady:
 doSomeWork()
 echo "You finally entered: ", ^userInput

main()

In this example, we use spawn() to execute the readLine() function of Nim’s standard library by a
thread of the ᴛʜʀᴇᴀᴅᴘooʟ module. We use the function isReady() to test if the user input is already
available, and call a worker procedure if there is no input yet. As we have no real work to do, that
proc just echos a message and calls os.sleep() to create a delay. Note that we use the echo() call in
doSomeWork() only to show what is going on — it is obvious that the repeated printed message
would interfere with the user input echoed by the terminal window. Actually, this example is not
really that nice, but it shows you the use of isReady() and at least one possible way to request user
input without blocking the whole app.

The parallel statement

With the parallel statement, the ᴛʜʀᴇᴀᴅᴘooʟ module offers one more way to use threads to process
data in parallel. While the parallel statement is already available in Nim for many years, it was
recently labeled as an experimental feature, so we have to use the {.experimental.} pragma to use it.
And the detailed description is currently only available in the experimental section of the manual:
https://nim-lang.org/docs/manual_experimental.html#parallel-amp-spawn-parallel-statement

With the parallel statement, it is easily possible to process large data, e.g. arrays or sequences, in
parallel. The compiler proves the data access for us, to avoid data races or otherwise invalid opera
tions. As a very simple example, we will sum up the elements of an integer array by use of two
threads running in parallel — when more than one physical CPU core is available:

import std/threadpool
{.experimental: "parallel".}

proc sum(i, j: int; a: array[8, int]): int =
 for k in i .. j:
 result += a[k]

proc main =
 var a: array[8, int]
 for i in a.low .. a.high:
 a[i] = i

 var s1, s2: int
 parallel:
 s1 = spawn sum(0, 3, a)
 s2 = spawn sum(4, 7, a)
 echo s1, " + ", s2

417

https://nim-lang.org/docs/manual_experimental.html#parallel-amp-spawn-parallel-statement

main()

Inside the parallel block, we again use spawn to launch a function that is then executed by a thread
of the threadpool. The sum() function in our example code sums up a range of array elements.
When spawn() is used inside a parallel block, its semantic use is different: Instead of a FlowVar[T],
spawn() now returns directly the result of the called proc. We can save these results in ordinary
variables, and access them freely after the parallel block. In the above case, we would finally sum
up the individual results to get the total sum of all the array elements.

Our example code above is kept very simple by intent, to clearly show the principal use. You may
try to modify it to work on sequences with arbitrary runtime sizes instead of a fixed-sized array,
and to use more than two threads. For all the details of the ᴛʜʀᴇᴀᴅᴘooʟ module, you should consult
its documentation.

As a direct replacement for the ᴛʜʀᴇᴀᴅᴘooʟ module, you may also try the external ᴛᴀsᴋᴘooʟs pack
age. Or you may try the much more advanced ᴡᴇᴀᴠᴇ package. Recently, two more modules for
threading support, called Malebolgia and Constantine, have arrived.

• https://github.com/status-im/nim-taskpools

• https://github.com/mratsim/weave

• https://github.com/Araq/malebolgia

Using the threads module to create new threads
If for some reason we cannot use the ᴛʜʀᴇᴀᴅᴘooʟ module, or if we need more control over the vari
ous threads, we can create our own threads:

proc sum(i: int) {.thread.} =
 var j, result: int
 while j < i:
 inc(j)
 result += j
 echo result

proc main =
 var th1, th2: Thread[int]
 createThread(th1, sum, 1e7.int)
 createThread(th2, sum, 1e7.int)
 joinThreads(th1, th2)

main()

The createThread() procedure is provided by the ᴛʜʀᴇᴀᴅs module, which is part of the sʏsᴛᴇᴍ mod
ule — for that reason, we do not have to explicitly import it. The proc that we want to execute in its
own newly created thread must be annotated with the {.thread.} pragma and use a single parame
ter. We pass the generic Thread[T] variable, the proc to execute, and the proc parameter to cre
ateThread(). The Thread variable must have the same generic type as the parameter of the proc that

418

https://github.com/status-im/nim-taskpools
https://github.com/mratsim/weave
https://github.com/Araq/malebolgia

we want to execute. In our example, that parameter type is a plain integer, but of course, we can
use other data types including objects, tuples, or container types like sequences.

Since createThread() does not return a result, we call echo() in our sum() procedure to show what is
going on. Actually, calling echo() from within a procedure running as a thread may not be a good
idea, as multiple echo() calls from different threads may interfere. We may use the ʟoᴄᴋs module to
make the output operation atomic, but to keep our example short and simple, we ignore that prob
lem for now. The code above creates two newly created threads, which in our case run the same
procedure with the same data. If more than one CPU core is available, the two threads should be
executed in parallel by the OS. After launching our new threads, we can use the joinThreads() pro
cedure to wait for the termination of all threads — we should generally do that before our app ter
minates itself.

Using channels for data exchange between threads
When we use the threadpool and spawn() to execute a function by one of the threads of the pool, we
get immediately the result of the executed function back, when the work of the function is done.

Threads created with the createThread() function of the ᴛʜʀᴇᴀᴅs module do not directly return a
result but can be executed for a long time period, often for the whole lifetime of the main process.
Typically, it is necessary to exchange messages and data between these types of threads — among
multiple child threads themselves, or among them and the process’s main thread. For this exchange
of messages and data, Channels can be used. Nim’s Channels use internally a queue for sending data
from one thread to another thread. A queue is a first-in-first-out (FIFO) data structure — items put in
first will also be extracted first. That way, the receiving thread will receive the items in the same
order as the sending thread has sent them.

The generic Channel[T] data type, and the functions to use it, are provided by the sʏsᴛᴇᴍ module, so
we do not need to import them. Channels should be used only for Threads of the ᴛʜʀᴇᴀᴅs module,
but not for the hidden threads of the ᴛʜʀᴇᴀᴅᴘooʟ module. Channels allow sending messages and
data only in one direction, for bidirectional communication we would need two separate channels.
Variables of the Channel data type are generally defined at the global scope, to avoid problems with
the thread-local garbage collector, and the generic type of the Channels determines the data type of
the messages that we can send through the Channel. The Channel deeply copies the sent data, which
may not be particularly efficient for large data packages.

In the code below, we will present a very simple example for the use of one single Channel. The
sum() procedure sums up again the first n natural integer numbers, but this time the function sums
up the numbers in chunks, and sends the sum of each chunk over the Channel to the parent thread:

var ch: Channel[int]
proc sum(i: int) {.thread.} =
 var j, res: int
 while j < i:
 inc(j)
 res += j
 if j mod 4 == 0:
 ch.send(res)

419

 res = 0
 ch.send(res) # send the remainder
 ch.send(0) # send zero to indicate termination

proc main =
 var th: Thread[int]
 ch.open()
 createThread(th, sum, 10)
 while true:
 let r = ch.recv()
 if r == 0:
 break
 echo "Received: ", r
 joinThreads(th)
 ch.close()

main()

Expected output:
Received: 10
Received: 26
Received: 19

The proc sum() continuously sums up 4 more numbers and then sends the partial sum into the
channel. The generic Channel[int] variable ch is defined in the global scope. In the main() proce
dure, we create the child thread, open the Channel, and read the Channel data with calls to recv(),
until we receive a zero value as a terminating condition. Finally, we call joinThreads() to ensure
that the child thread was indeed terminated, and we call close() on the channel to close it. Note, that
in sum(), we use an additional send() call to send the last partial sum, which may have less than 4
summands, and so may not have been sent. Instead of this additional send() call in the while loop, a
condition like if j mod 4 == 0 or i == j: could be used, of course. When we are done, we send the
zero value to indicate to the parent thread, that we are done. This way, the parent thread will not
wait for more data that never got sent. In the main() procedure, we use recv() to read the data from
the Channel. Recv() would block if data is not yet available. Instead, we could use tryRecv(), which
returns a tuple, with the field dataAvailable indicating if there is already something to read avail
able. The open() function accepts as a second optional argument the number of items that can be
buffered in the internal items queue of the channel. If that limit is reached, further calls to send()
would block until the reading thread has read the next item. If we restrict the maximum number of
items in the Channel, we may use instead of send(), which may block when the channel is full, try
Send(), which just returns false for this case, without blocking.

Of course, the above code example doesn’t make much sense, as no useful work is done in parallel
and there’s no reason for sum() not to sum up all the elements immediately. But the example should
show you the basic use of Channels, including the need for having a terminating condition.

420

Race conditions
A race condition may occur when two or more threads attempt to read and write to a shared
resource at the same time. Such behavior can result in data corruption or unpredictable results,
that are difficult to debug. Let’s consider this small example, where two threads increase the value
of a global integer variable:

var counter: int

proc incCounter(i: int) {.thread.} =
 for j in 0 ..< i:
 var local = counter
 local += 1
 counter = local

const N = 1000

proc main =
 var th1, th2: Thread[int]
 createThread(th1, incCounter, N)
 createThread(th2, incCounter, N)
 joinThreads(th1, th2)

main()
echo N, ": ", counter

In the code above, the two threads run concurrently and in parallel when your CPU has at least two
physical cores. Each thread increases the global counter variable N times, so one may expect a final
result of 2 * N. But at least, when the threads are running in parallel, the actual result will be a ran
dom value between N and 2 *N. The problem is, that the threads do not increase the global counter
in one atomic step, but create a local copy, increase the value of the copy, and write the value back.
When the other thread had modified the global counter variable in between, that modification is
overwritten. When the two threads would run not in parallel, but concurrent on only one CPU core,
then the actual result may depend on the way how the OS does the actual task switching.

These kinds of problems are sometimes called race conditions because the actual behavior is deter
mined by the order in which the various threads access the data. In the example code, the actual
issue results from the copying into the local variable, and later copying the value back — a plain
inc() executed on the global variable may work. We used the local copy here, to make the problem
visible. Whenever we would work in such an unordered way onto more complicated data like
strings or objects, we would get corrupted data. This example should raise your awareness to all
the concerns, which may occur when multiple threads access global data in an uncontrolled way.

We have already learned about Channels, which provide a way to exchange data between threads
without the use of global variables. Other methods to protect global variables from uncontrolled
access, which can lead to corrupted states, are locks, mutexes, or semaphores. We will give an
example to do access control through the use of locks in the next section. In the example above, we
used as global data a primitive value data type. Even more problems may occur when we try to use

421

global reference data types: In the past, the Nim standard library provided special functions like
allocShared() to allocate pointer and reference data types that can be accessed from multiple
threads. But as Nim’s thread handling may change and improve in the future further, we will not
try to discuss all these details here. It should be enough that you have a feeling for the concerns,
that may arise from executing multiple threads with shared data — for the details, you should con
sult the documentation of Nim’s standard library and the language manual.

Guards and locks
While Nim’s Lock data type and the corresponding functions are defined in the ʟoᴄᴋs module of the
standard library, that module contains only minimal explanations, so we have to consult the experi
mental section of the language manual.

In computer science, a lock or mutex (from mutual exclusion) is a synchronization primitive that
enforces limits on access to a resource when there are many threads of execution. Before that
resource is accessed, the lock is acquired, and after the resource is accessed, it’s released. The sim
plest type of lock is a binary semaphore. It provides exclusive access to the locked data. Following
this definition from Wikipedia, Nim’s locks seem to be actually binary semaphores.

Nim’s Locks are generally used together with the guard pragma, which we can attach to a global
variable, that is accessed from more than one thread. With the guard pragma attached, each thread
must first acquire the lock before it is allowed to access that variable. If the lock is already acquired
by another thread, acquire() blocks until that other thread releases the lock to indicate that it is
done with its access. Of course, this possible blocking can decrease the total performance, so each
thread should acquire the lock only, when it really needs access to the protected data, and release
the lock as soon as possible.

We can use the template withLock to access the guarded global variable within a block — withLock()
acquires the given lock and then releases it at the end of the block. Accessing a guarded variable
outside a withLock() block would give a compile-time error.

import std/locks
var lock: Lock
var counter {.guard: lock}: int

proc incCounter(i: int) {.thread.} =
 for j in 0 ..< i:
 withLock lock:
 var local = counter
 local += 1
 counter = local

const N = 1000

proc main =
 var th1, th2: Thread[int]
 createThread(th1, incCounter, N)
 createThread(th2, incCounter, N)
 joinThreads(th1, th2)

422

main()
echo N, ": ", counter

When you now run the above code, the counter should always have the desired value 2 * N. Note
that replacing the withLock with a plain acquire() and release() pair seems not to work for locks
that are used as guards — but actually, there is no reason to do that, the withLock block is easier to
use and ensures that acquire() and release() is always used in matching pairs.

Exceptions in threads
Whenever a procedure that is running as its own thread raises an uncaught exception, the whole
process is terminated and a stack trace with the corresponding error message is displayed in the
terminal window. This applies not only to the threads of the ᴛʜʀᴇᴀᴅs module but also when the
spawn() function is applied to run functions by one of the threads in the pool.

Malebolgia
We already mentioned a few external packages for parallel code execution, including Weave,
Taskpools, and Malebolgia. While Malebolgia is not yet part of Nim’s standard library, it was cre
ated by Nim’s main developer Mr. Rumpf, so we can expect that it works with Nim 2.0 and ARC/ORC
memory management, and may continue to work in the future. Internally using a pool of threads,
Malebolgia supports structured concurrency with data parallelism, and ensures synchronization
using barriers. It can be used similar to the legacy parallel statement of the ᴛʜʀᴇᴀᴅᴘooʟ module to
process the content of seq and array containers in parallel. Mr. Rumpf already provides a few
examples, like parMap(), parApply(), parReduce(), and parFind(), for processing of container con
tent in parallel. Additionally, Malebolgia also supports spawning recursive procedures, and pro
vides methods to cancel parallel code execution or to specify timeouts. Finally, the package is adver
tised to be energy efficient and compact, allowing its use also for embedded systems with restricted
resources. In fact, the malebolgia.nim module has fewer than 300 lines of source code.

As a first, very simple example, we will present a way to sum up in parallel some numbers stored in
a sequence. By utilizing the spawn and awaitAll features, the program distributes the workload
across multiple threads:

import malebolgia
import std/sequtils

const Cores = 8

proc sum(d: openArray[int]; a, b: int): int =
 for i in a .. min(b, d.high):
 result += d[i]

proc main(s: openArray[int]) =
 var sums = newSeq[int](Cores)
 var b = s.len div Cores + 1

423

 var m = createMaster()
 m.awaitAll:
 for i in 0 ..< Cores:
 m.spawn sum(s, i * b, (i + 1) * b - 1) -> sums[i]

 var res: int
 for el in sums:
 res += el
 echo res

main(toSeq(1 .. 100))

As Malebolgia is not yet part of Nim’s standard library, we would have to use Nimble or the newer
Atlas tool to install it. For Nimble, a 'head' install with nimble install malebolgia@#head is recom
mended, as last time we tried, the nimble file of that project was not properly updated, so that we
got a very old package version.

Malebolgia uses a so-called master object, which is created by a call of createMaster(), to synchro
nize the parallel code execution. Our code example creates such a master object, and then uses it to
construct an awaitAll block in which spawn is used in a for loop to execute a user defined proc in
parallel. The parallel executed subroutines can have ordinary value parameters and return an
optional result, which is stored by use of the -> operator in ordinary variables.

In our example code, we assume that we have eight CPUs available. So we split the full sequence
into eight equally sized blocks, and pass the block ranges to the spawned sum() proc. After all the in
parallel executing sum() procedures have finished their work and so the awaitAll block has been
terminated, we only have to sum up the eight partial sums and can print the result.

When we test our program with a longer sequence, for example with ten millions values, and mea
sure the execution time with the shell time command, we might notice that the execution time is
longer than what a plain summing for loop would take. That is not too surprising, as for such sim
ple tasks the memory bandwidth of our computer and the cache use are important. So the use of
more cores may not really improve the performance. Perhaps passing our seq as an openArray para
meter to the sum() proc causes data copies, so data passing as a ptr UncheckedArray as done in the
examples provided by the package may give better performance.

Malebolgia supports even some form of recursion. Because a master object can not be passed to
subroutines, we can use the function createHandle() to create a master handle, which we may pass
and use for further recursive spawn calls. The Malebolgia readme file has a simple example for
that, where the subroutine just prints some texts. Master handles can be used for further spawns,
but they do not support the awaitAll() operation.

Note that using a recursive call of procs that return a result can not work:

proc fac(m: MasterHandle; i: int): int {.gcsafe.} =
 var res: int
 if i < 2:
 result = 1
 else:

424

 m.spawn fac(m, i - 1) -> result
 result *= i

proc factorial(i: int): int =
 var m = createMaster()
 m.awaitAll:
 m.spawn fac(m.getHandle, i) -> result

echo factorial(5)

We have not yet managed to convert the Pi approximation code from https://github.com/status-im/
nim-taskpools#example-usage or the https://github.com/mratsim/weave#task-parallelism example
to Malebolgia.

In the awaitAll block, we can call cancel() on the master object to cancel the execution of all
spawned threads. The createMaster() function supports additionally an optional timeout parameter
for the thread execution. The cancellation on timeout does not occur automatically, but the function
canceled() can be called on the master object to check if a timeout is reached. Actually, this timeout
seems to work as a plain timer with no additional functionality. The Malebolgia readme file has
simple examples for the use of timeouts and the cancel operation, so we will not repeat that here.

Lockers

The package supports the shared access and mutation of data structures like hash tables. To make
that work, the instance variable is wrapped by an initLocker() call, and can then be passed to the
spawned subroutine, where a protecting lock() statement allows its mutation. The readme file has a
simple code example for this.

Exception handling

If a spawned task raises an exception, that exception is automatically re-raised after the awaitAll
block.

Mutable parameters

The spawned subroutines currently do not allow the use of var parameters. However, we can take
the address of a variable declared outside of the awaitAll block and pass it as a pointer to spawned
subroutines. Inside that subroutine, that variable has typically to be protected with a lock, for
which the Malebolgia package provides a convenient TicketLock data type. The readme file has an
example for its use.

Parallel processing of container content

A typical use case of the Malebolgia package seems to be the parallel processing of seq-like data
types. As an example, we will investigate the parMap() template from the src folder of the package:

template `@!`[T](data: openArray[T]; i: int): untyped =
 cast[ptr UncheckedArray[T]](addr data[i])

425

https://github.com/status-im/nim-taskpools#example-usage
https://github.com/status-im/nim-taskpools#example-usage
https://github.com/mratsim/weave#task-parallelism

template parMap*[T](data: var openArray[T]; bulkSize: int; op: untyped): untyped =

 proc worker[Tin, Tout](a: ptr UncheckedArray[Tin];
 dest: ptr UncheckedArray[Tout]; until: int) =
 for i in 0..<until: dest[i] = op(a[i])

 var m = createMaster()
 var result = newSeq[typeof(op(data[0]))](data.len)
 m.awaitAll:
 var i = 0
 while i+bulkSize <= data.len:
 m.spawn worker(data@!i, result@!i, bulkSize)
 i += bulkSize
 if i < data.len:
 m.spawn worker(data@!i, result@!i, data.len-i)
 result

This template behaves similarly to the map() proc or the mapIt() template from the sᴇǫᴜᴛɪʟs mod
ule of Nim’s standard library, but performs the work in parallel on all available CPU cores. The tem
plate has the familiar structure with the waitAll block and the spawn calls on the master object.
The input and output data is passed as ptr UncheckedArray to the worker proc, using the helper
template @! to cast the data. The bulksize parameter controls the number of used threads. Typi
cally that value might be data.len div NumCPUs.

A typical use case for the parMap() template could be the mapping of integer numbers to corre
sponding strings, as that should be an operation which is not too trivial and requires at least a few
CPU cycles:

import std/monotimes
import sequtils
import Malebolgia, Malebolgia/[paralgos]

proc main =
 var start: MonoTime
 var s = toSeq(0 .. 9999)
 var r: seq[string]
 start = getMonotime()
 r = s.mapIt($it)
 echo getMonotime() - start
 echo r[^1]

 start = getMonotime()
 r = s.parMap(s.len div 8, `$`)
 echo getMonotime() - start
 echo r[^1]

main()

426

However, for our test the performance of the single-threaded and the parallel version are very
close.

Parsing data files (in parallel)
As a practical application for parallel code execution, we will finally present an example of the
process of parsing textual data files to extract some information. A commonly used file format to
store data in files is a comma-separated value (CSV) file. Each line of the file is a data record, consist
ing of one or more fields, separated by commas from each other.

An example can be a file, which stores the population and total area (in km^2) of all the districts of
our county, like

#District,Country,State,Vehicle registration,Area,Population
#
Stade,Germany,Lower Saxony,STD,110.03,47611
Cuxhaven,Germany,Lower Saxony,CUX,161.91,48326
Berlin,Germany,Berlin,B,891.7,3769495

Perhaps we want to find the district with the highest or lowest area or population, or the one with
the highest or lowest population density?

Generate the input file

As we don’t have any real data files available for this task and should avoid generating unnecessary
Internet traffic by downloading test files just for our experiments, we will generate a dummy CSV
file as a first step.

import std/[random, strformat]
from std/os import fileExists
from std/strutils import join, toUpperAscii

const
 Lchars = {'a' .. 'z'}
 Uchars = {'A' .. 'Z'}
 Lines = 1e6.int
 FileName = "csvdata.txt"

proc rstr(l: int): string =
 let len = rand(l) + 1
 result = newString(len)
 result[0] = sample(Uchars)
 for i in 1 ..< len:
 result[i] = sample(Lchars)

proc main =
 if os.fileExists(FileName):
 echo "File exists, we may overwrite important data"

427

 quit()

 var f: File = open(FileName, fmWrite)
 f.writeLine("#District,Country,State,Vehicle registration,Area,Population\n#")

 for i in 0 ..< Lines:
 let dist = rstr(12)
 let count = rstr(8)
 var state = rstr(14)
 for i in 2 .. state.high - 2:
 if rand(7) == 7: # in rare cases name may enclose a space
 state[i] = ' '
 state[i + 1] = toUpperAscii(state[i + 1])
 break
 let vreg = rstr(3)
 let area = fmt"{rand(28.0 .. 1e6):1.2f}"
 let pop = $rand(500 .. 5e6.int)

 let res = [dist, count, state, vreg, area, pop].join(",")
 f.writeLine(res)

 f.close

main()

There is no reason to further explain the above code here, as all that was explained already in pre
vious sections of the book. The usual strategy for parsing CSV files is, that we read the file line by
line, and process the data fields of each line. We will start by processing the CSV data with various
single-threaded programs, using different functions and modules from Nim’s standard library
(sᴛʀᴜᴛɪʟs split(), ᴘᴀʀsᴇᴜᴛɪʟs, sᴛʀsᴄᴀɴs, ᴘᴀʀsᴇᴄsᴠ, ᴍᴇᴍғɪʟᴇs) or the external packages ʀᴇɢᴇx and ɴɢᴇɢs.
After we have compared the performance of all these solutions, we will use a fast one with code
executed in parallel on all available CPU cores to optimize the processing speed.

Using regular expressions

The first choice of people coming from other languages may be to use regexes for separating the
components of each line. Regexes allow a very flexible parsing of strings, but regex parsing is not
very fast, and as our file has a very simple format, where the different fields are cleanly grouped by
separating commas, other methods for extracting the data fields can be faster and simpler. But as
regexes are indeed useful for more complicated data extraction tasks, we will start with a small
regex code example. Regex matching gives us only the substrings but does not convert strings con
taining floating-point or integer numbers to numeric values. We will leave this conversion out for
now — later we can use parseInt() or parseFloat() to get the numeric values.

The code for our first regex solution is straightforward, we have introduced all the needed func
tions in earlier sections of the book:

import regex
from std/strutils import repeat

428

const
 FileName = "csvdata.txt"
 P = """([^,]+)"""
 r = re(repeat(P & ',', 5) & P)

proc main =
 var m: RegexMatch
 for l in Filename.lines:
 if l[0] != '#': # skip first two and all other comment lines
 if match(l, r, m):
 when true: # debug
 discard
 else:
 for i in 0 .. 5:
 stdout.write(m.group(i, l))
 stdout.write(' ')
 echo ""
 else:
 assert false

main()

You might wonder about the regex pattern: We have used [^,] to create a character class. The ^ has
a special meaning if used in square brackets: It inverts the characters, that is [^,] actually matches
all characters that are not a comma. This is logical in our case, as our data fields are separated by
commas. The pattern P = """([^,]+)""" matches one or more characters that are not commas. The
outer round brackets indicate, that we want to capture the match. We build our final pattern by the
concatenation of pattern P followed by a comma, repeated five times, and a final P. In the for loop,
we skip all lines starting with a hash character. We have commented out the printout of the actual
captures to measure the time for pure regex parsing later.

Using PEGs

As one more possible solution, we may try PEG parsing:

import npeg
const
 FileName = "csvdata.txt"

const p = peg("line"):
 line <- (>data * sep)[5] * >data
 data <- +(1 - ',')
 sep <- ','

proc main =
 for l in Filename.lines:
 if l[0] != '#':
 let m = p.match(l)
 when false: # only for debugging

429

 if m.ok:
 echo m.matchLen
 echo m.captures
 else:
 assert false

main()

This solution should not be surprising for you again, as we have discussed the ɴᴘᴇɢ module in some
detail in Part V of the book. We used +(1 - ',') as a pattern to grep the data fields, that is one or
more repetitions of any character that is not a comma. The [5] indicates exactly five repetitions. It
may be a bit surprising that we have to put this expression after the pattern expression, while oper
ators like *, + and ? have to be placed in front for the ɴᴘᴇɢs module.

Using split()

The third, and maybe most obvious solution, is to just use split() of the sᴛʀᴜᴛɪʟs module:

import std/strutils
const
 FileName = "csvdata.txt"

proc main =
 for l in Filename.lines:
 if l[0] != '#':
 let res = l.split(',')
 when false:
 assert res.len == 6
 echo res
main()

For this use case, split() is the simplest solution, and it should be faster than the regex and PEG solu
tions. But for each call, split() returns a seq with six strings, which have to be newly allocated for
each call. So even faster solutions could be possible.

Using parseutils

So let us try the ᴘᴀʀsᴇᴜᴛɪʟs module now:

import std/parseutils
const
 FileName = "csvdata.txt"

proc main =
 for l in Filename.lines:
 if l[0] != '#':
 var i: int
 var dist, count, state, vreg: string

430

 var area, pop: string
 #var area: float
 #var pop: int
 i += parseUntil(l, dist, ',', i) + 1
 i += parseUntil(l, count, ',', i) + 1
 i += parseUntil(l, state, ',', i) + 1
 i += parseUntil(l, vreg, ',', i) + 1
 i += parseUntil(l, area, ',', i) + 1
 i += parseUntil(l, pop, ',', i) + 1
 # i += parseFloat(l, area, i) + 1
 # i += parseInt(l, pop, i) + 1
 when false:
 echo dist, ";", count, ";", state, ";", vreg, ";", area, ";", pop

main()

As we discussed the ᴘᴀʀsᴇᴜᴛɪʟs module in great detail in Part V of the book, you should easily
understand the above code. For extracting the area and population data, we will use string parsing
only for now and avoid the also available parseFloat() and parseInt() functions, as we want to com
pare the performance of the four solutions before we continue.

Using strscans

In Part III of the book, in the section about String processing, we introduced the module sᴛʀsᴄᴀɴs,
which can be convenient when we have to parse data with a strict, well-defined format. But that
module has some restrictions, which can make its use difficult or impossible for some parsing tasks.
The provided scan() macro supports, with the parameter types $i, $f, and $w, the processing of inte
gers, floats, and ASCII identifiers. Here, ASCII identifier stands for valid Nim symbols, indicating
that the $w identifier is not allowed to start with a digit or contain spaces. But actually, we intention
ally designed our generator program that generated our test CSV file so, that it may insert spaces in
the name strings in rare cases to make the data more realistic. To allow us to experiment with the
sᴛʀsᴄᴀɴs module, we can patch our generator program from Generate the input file to use an
expression like if false: instead of if rand(7) == 7:. After doing that, and compiling and running
the generator program to get a test data set without spaces, we can test the following program:

our input file format
#[
#District,Country,State,Vehicle registration,Area,Population
#
Ghhgkedmqua,Gircc,J,Ylmd,517582.67,3113635
]#

import std/strscans

const
 FileName = "csvdata.txt"
 Debug = false

proc main =

431

 var
 district, country, state, vehiclereg: string
 area: float
 pop: int

 for l in Filename.lines:
 if l[0] != '#':
 if scanf(l, "$w,$w,$w,$w,$f,$i", district, country, state, vehiclereg, area,
pop):
 when Debug:
 echo district, ' ', country, ' ', state, ' ', vehiclereg, ' ', area, ' ',
pop
 else:
 assert(false)

main()

As described in Part III of the book (Module strscans), we use the scanf() macro to process each
line. The $w parameters parse an identifier each; the ',' character in the format string stands for
itself; and $f and $i parse a floating-point number and an integer number, respectively. Compiling
the program with the option -d:release and executing it results in run-times of 260 ms when com
piled with --mm:orc and 240 ms for --mm:refc. That is really fast and comparable to the times for the
ᴘᴀʀsᴇᴜᴛɪʟs module. Note that sᴛʀsᴄᴀɴs not only gives us the unprocessed string for area and pop, but
already the numeric value!

The following table lists the run-times for the five different ways of parsing the CSV data into
strings. Additionally, in row 6 of the table, we have used ᴘᴀʀsᴇᴜᴛɪʟs to parse the area and popula
tion directly into numeric variables. The CSV data has been generated with our program from the
start of this section, and we compiled our parsers with -d:release, using both --mm:arc and
--mm:refc. The time shell command was used to measure the program run-times. All programs are
run on a modern AMD Ryzen 9 5900HX (8-core) machine and have been compiled with Nim v1.9.3
with option -d:release and gcc 12.2.1 on a 64-bit Linux box.

Method Runtime refc Runtime arc

regex 1881 ms 4905 ms

npeg 1315 ms 1176 ms

split() 408 ms 429 ms

parseutils 263 ms 302 ms

parseutils float/int 245 ms 282 ms

strscans 240 ms 260 ms

As expected, regex parsing is the slowest, and it becomes even slower with --mm:arc. Using sᴛʀsᴄᴀɴs
or ᴘᴀʀsᴇᴜᴛɪʟs results in the fastest times, and we get the float and int values for free. The perfor
mance with the option --mm:orc is typically close to --mm:arc.

Can we further improve the performance? Indeed, for the concrete data format, and when we are

432

only interested to find numeric extreme values, then actually parsing the first four strings is not
really necessary:

import std/parseutils
const
 FileName = "csvdata.txt"

proc main =
 for l in Filename.lines:
 if l[0] != '#':
 var i: int
 var dist, count, state, vreg: string
 var area: float
 var pop: int
 i = l.high
 while l[i] != ',':
 dec(i)
 dec(i)
 while l[i] != ',':
 dec(i)
 inc(i)
 i += parseFloat(l, area, i) + 1
 i += parseInt(l, pop, i) + 1
 when false:
 echo dist, ";", count, ";", state, ";", vreg, ";", area, ";", pop

main()

This reduced the runtime with --mm:arc to 128 ms. Parsing the two numeric values is enough to find
the line with the extreme value — we can then just return the whole line string, from which the
other fields can then be extracted. But this optimization is a bit dangerous; for corrupted data, our
backward scanning loops may run before the start of the line string, generating a runtime error.

Using parsecsv

The above program versions that use the ᴘᴀʀsᴇᴜᴛɪʟs module are already fast. But as the processing
of CSV files is a very common operation, the Nim standard library does provide a specialized mod
ule for exactly this purpose, which is called ᴘᴀʀsᴇᴄsᴠ. It is very fast, at least as long as we consider
only the reading of the file, and ignore stuff like parsing numbers, which is typically part of real-
world data processing. This module is also very easy to use, so it should be the first choice when
ever we have to read CSV files:

import std/parsecsv

const
 Debug = false

proc main =

433

 var parser: CsvParser
 parser.open("csvdata.txt")
 while readRow(parser):
 for val in items(parser.row):
 when Debug:
 stdout.write val, ", "
 else:
 discard
 when Debug:
 stdout.write('\n')
 parser.close()

main()

The ᴘᴀʀsᴇᴄsᴠ module provide a CsvParser data type. We use a variable called parser for this data
type, call open() on it with a specified file name, and then iterate over the lines of the CSV file with
readRow(). Then we can access the fields of that row with the ordinary items() iterator. The API
documentation has more examples of using the module, including an example in which a CSV
header is read first and then used as a reference for item access. The API documents also describe
how we can use different field separators or how we can apply custom quoting characters. Quoting
is needed when the fields may contain the separator character or newlines. Note that currently
only single separator characters are allowed, so separator strings like "; " are not supported. One
reason why the reading performance of this module is very high is that it avoids string allocations.
Each row of the CSV file is read into a pre-allocated row field of the string data type. For our test of
the pure file read performance, we set the constant Debug to false to avoid slow output operations.
To test whether our program actually does what we expect, we can set Debug to true and run the
program with terminal output.

Before we actually investigate how we can make file parsing parallel, we will introduce another
interesting and very fast method of file access: memory-mapped files.

Memory-mapped files

A memory-mapped file is a technique where a file on disk is mapped directly into a program’s mem
ory space, allowing the file to be accessed and manipulated as if it were an array in memory. This
enables faster and more efficient file operations, as it reduces the need for separate read/write calls
and allows the operating system to manage file access and caching more effectively.[1]

Using memory-mapped files can increase the I/O performance for large files, may allow accessing
very large files by using small amounts of RAM using a technique called "lazy loading", and may
avoid unnecessary copying of data. Typically, the memory mapping process is handled by the vir
tual memory manager of the operating system.

The following code uses module ᴍᴇᴍғɪʟᴇs to read our CSV data file:

import std/[memfiles, parseutils]
from std/strutils import startsWith

const

434

 Debug = false

template toOpenArrayChar(s: MemSlice): untyped =
 toOpenArray(cast[ptr UncheckedArray[char]](s.data), 0, s.size - 1)

proc main =
 var f = memfiles.open("csvdata.txt")
 var r: MemFile
 var dummy: int
 for line in memSlices(f):
 r.mem = line.data
 r.size = line.size
 var index = 0
 for val in r.memSlices(','): # iterator memSlices() has no pairs() variant, so we
use index variable
 when Debug: # this whole debug construct is a bit ugly :-)
 stdout.write val, ", "
 if ($val).startsWith('#'): # val is not a string, but a MemSlice. Maybe better
use the lines() iterator?
 break # skip pure comment lines with str[0] == '#'
 inc(index)
 if index == 6: # the population field
 var j: int
 assert(parseInt(val.toOpenArrayChar, j) == val.size) # test the template
 echo "::: ", j
 else:
 inc(dummy) # ensure the loop body is not optimized out
 echo dummy
 close(f)

main()

The pure I/O performance of this code is very high, but drops significantly, as expected when real
data processing like parsing of numbers is involved. To be sure that the inner loop body is not com
pletely removed by the compiler, we have added the dummy variable. And still, we get running times
of only 32 nanoseconds! The example is based on a code snippet provided by Mr. C. Blake in the
Nim forum.[2] The toOpenArrayChar() template uses the experimental toOpenArray() function to
convert the memslice to an open array with char base type, which can be processed by the string
processing functions of Nim’s standard library. In the example, actually two memSlices are used:
First, we read the lines of a file into a slice, and then we copy that slice into a local slice variable
called r to iterate over the comma-separated fields. We will not try to explain the details of the
above code. When you should really need extreme I/O performance, and the task is not already
restricted by actual data processing operations like parsing of numeric data, you should study the
ᴍᴇᴍғɪʟᴇs module carefully. You may need to consult additional resources or ask for help, as the
module documentation is still short and lacks many examples.

The table below summarizes our results. All programs are run on a modern AMD Ryzen 9 5900HX
(8 cores) machine, and have been compiled with Nim v1.9.3 with option -d:release and gcc 12.2.1
on a 64-bit Linux box.

435

Method Runtime refc Runtime arc

regex 1881 ms 4905 ms

npeg 1315 ms 1176 ms

split() 408 ms 429 ms

parseutils 263 ms 302 ms

parseutils float/int 245 ms 282 ms

strscans 240 ms 260 ms

parsecsv 275 ms 157 ms

memfiles 31 ms 31 ms

References:

• https://en.wikipedia.org/wiki/Memory-mapped_file

• https://forum.nim-lang.org/t/9688#63670

Making it parallel

The next task is to somehow distribute all the work to a set of threads. In this section, we do not
focus on optimum I/O performance but on the actual parsing of all the data fields, which is a CPU-
intensive task and should benefit from the use of all available CPU cores. So we do not use the ᴍᴇᴍ
ғɪʟᴇs or the dedicated ᴘᴀʀsᴇᴄsᴠ module in this section, but ordinary file operations like read
Chars(buf) provided by the sʏsᴛᴇᴍ module and parsing functions from the ᴘᴀʀsᴇᴜᴛɪʟs module.

The number of threads should be at least as large as the number of physical cores of our computer
so that we can really distribute all the work on all available cores. Our first idea may be to use a
thread for each line of the file, but obviously really creating millions of threads make not much
sense, and even feeding millions of procs to spawn of the ᴛʜʀᴇᴀᴅᴘooʟ should generate a lot of over
head. Processing only one line is just too little work for a thread, so that the switching process gen
erates too much overhead. A better idea seems to be, to use a thread for maybe a few thousand
lines.

So our first task is to split the whole file into chunks or fragments, where each chunk should con
tain a number of lines. Seems to be easy, but this splitting of the whole CSV file into chunks should
be really fast, so using the lines() iterator is not a good idea. But the ɪo module provides the func
tions readBytes() or readChars(), which we can use to read the CSV file fast in larger blocks. Here is
a first sketch of the code:

const
 FileName = "csvdata.txt"

proc main =
 var buf = newString(1024)
 var f: File = open(FileName, fmRead)
 while not f.endOfFile:
 let res = f.readChars(buf)

436

https://en.wikipedia.org/wiki/Memory-mapped_file
https://forum.nim-lang.org/t/9688#63670

 #stdout.write(buf) # wrong for last read, setLen(res) is missing in this sketch

 f.close

main()

This first attempt takes only 8 ms to read the file in. But the obvious issue is, that the chunks of 1024
bytes contain fractional lines. To fix that, we can just do a backward search for the line end marker
'\n' in the buffer:[3]

const
 FileName = "csvdata.txt"
 BlockSize = 1024 - 1 # one byte for the terminating NULL char?

proc main =
 var buf = newString(BlockSize)
 var f: File = open(FileName, fmRead)
 while not f.endOfFile:
 let res = f.readChars(buf)
 if f.endOfFile:
 buf.setLen(res)
 else:
 var i = res - 1
 while buf[i] != '\n':
 dec(i)
 inc(i)
 f.setFilePos(i - res, fspCur)
 buf.setLen(buf.len + i - res)
 stdout.write(buf)
 echo "---"
 assert buf[buf.high] == '\n'
 buf.setLen(BlockSize) # reset initial size for the next read

 f.close

main()

The code from above is again easy, we only have to get the indices right. The setFilePos() function
may be new for you. Ee use it to jump back in the file. The setFilePos() function allows it, to set the
new position relative to the file start, to the actual position, or to the file end. As we want to move
back, we used the mode fspCur to indicate the actual position. We have added an echo() statement
that prints "---" after each chunk, which helps us to verify, that the chunk boundaries are really the
line endings. Without the output operations, this code runs in 14 ms, which is still not that bad.
Now, we can just pass each chunk to its own thread, which then can select and return a candidate
line from this chunk. So we finally have only to select the best of all candidates.

We will use Nim’s ᴛʜʀᴇᴀᴅᴘooʟ for the actual parallel processing, as spawn offers an easy way to
return results to the main thread. Using the ᴛʜʀᴇᴀᴅs module should also work, but then we would

437

need Channels to return results.

import std/threadpool
import std/parseutils
from std/strutils import splitLines
const
 FileName = "csvdata.txt"
 BlockSize = 1024 * 1024 - 1

type
 Res = object
 dist, count, state, vreg: string
 area: float
 pop: int

proc candidate(lines: string): ref Res =
 var res: Res
 result = new Res
 result[] = Res(area: NegInf, pop: int.low)
 for l in lines.splitLines():
 if l.len > 0 and l[0] != '#': # skip first two and all other comment lines
 var i: int
 i += parseUntil(l, res.dist, ',', i) + 1
 i += parseUntil(l, res.count, ',', i) + 1
 i += parseUntil(l, res.state, ',', i) + 1
 i += parseUntil(l, res.vreg, ',', i) + 1
 i += parseFloat(l, res.area, i) + 1
 i += parseInt(l, res.pop, i) + 1
 if res.pop > result.pop:
 result[] = res

proc main =
 var flowVarSeq: seq[FlowVar[ref Res]]
 var buf = newString(BlockSize)
 var f: File = open(FileName, fmRead)
 while not f.endOfFile:
 let res = f.readChars(buf)
 if f.endOfFile:
 buf.setLen(res)
 else:
 var i = res - 1
 while buf[i] != '\n':
 dec(i)
 inc(i)
 f.setFilePos(i - res, fspCur)
 buf.setLen(buf.len + i - res)
 flowVarSeq.add(spawn candidate(buf))
 assert buf[buf.high] == '\n'
 buf.setLen(BlockSize)

438

 f.close

 var final = Res(area: NegInf, pop: int.low)
 for c in flowVarSeq:
 let h = ^c
 if h.pop > final.pop:
 final = h[]

 echo "Final result:", final

main()

Note that we always have to compile the program with --threads:on.[4] When we compile the code
above with option -d:release, it takes approx 38 ms to run, on our AMD Ryzen 9 5900HX (8 cores)
machine. Indeed, that’s an eightfold performance improvement, which is not bad.

Unfortunately, when we compile the code with -d:release --mm:arc, we get runtimes of about 500
ms, which is no improvement compared to the single-threaded code. And with -d:release --mm:orc
the runtime is even in the range of 700 ms. At the end of this section, we will present a solution,
which works fine also for --mm:arc — for --mm:orc the runtime is decreased to 300 ms at least.
(Has been fixed for Nim V 2.0, --mm:arc, --mm:orc and --mm:refc are all below 40 ms now.)

When you think about the code for a few minutes, its basic idea should become clear: We read a
block from the CSV file, and when the end of the file is not yet reached, we go back to the last new
line character. Then we use spawn to run our candidate() proc with the fixed data block as a para
meter. Similarly, as before, the candidates() proc uses functions from ᴘᴀʀsᴇᴜᴛɪʟs to parse the lines
and select the best candidate. To simplify the data handling, we have declared a Res object, which
contains the parsed fields. All the FlowVar[ref Res] instances are collected in a sequence. When the
end of the file is reached and all the data chunks have been passed to a spawned candidate() proc,
we can start reading the FlowVar sequence. The ^ operator blocks, until the thread has finished, and
we can access the data of the FlowVar to select the optimum from all the candidates.

To allow easy testing of our code, we have decided to select the line with the highest population
count. So we can just edit our CSV file with a text editor, replace the population of a line with a very
large value, and prove if our program will really find that line. Searching for the minimal or maxi
mal area, or for population density, requires only some tiny modifications of the code.

You may wonder why we have added the condition if l.len > 0 in the body of the candidate()
proc. Well, our data chunks end with newline characters, and the splitLines() iterator gives an
empty line for the last split. That empty line has to be ignored. The test l.len > 0 should cost not
that much performance. You may think yourself about a way to save this test, by passing only
chunks to candidate() proc that do not end with a newline character. Seems to be possible, but then
we have to care for the fact, that our whole CSV file may end with a new line, or may not end with a
new line. We have to take care of that.

The performance of our code strongly depends on the used BlockSize. We used one megabyte,
which results in about 40 spawn calls for our 44 MB CSV file. Smaller block sizes decrease the per
formance, as more spawn calls increase the overhead for managing the threads of the pool. For
playing with the program, using an explicit BlockSize makes some sense. But for a real-world appli

439

cation, it would make more sense to start with some useful number of threads and calculate the
block size by dividing the CSV file size by the number of desired threads. As for total thread count,
we would usually use at least the number of physical CPU cores, but not a much larger value, to
avoid the unnecessary overhead for thread management.

You may wonder why we chose ref Res instead of just Res as the result for the candidate() proce
dure. The reason is, that currently a spawned proc may only return a value object when the object
has no fields, that contain data types that are handled by the garbage collector. For details, you may
consult the Nim language manual.

Note that the call spawn candidate(buf) copies the buf parameter. This way all the chunks of the ini
tial CSV file have to be copied, which may minimally decrease performance. But the copying of data
blocks is fast — modern hardware has memory bandwidths of a few dozen GB/s. Our initial sketch
for only reading in the CSV file took 12 ms, so we may guess that copying all the chunks may take
not more time. As an alternative solution to the above code, we could try the ᴛʜʀᴇᴀᴅs module, using
Channels to pass the candidates back, or maybe the parallel construct. Or we may experiment with
so-called memory-mapped files, see https://nim-lang.org/docs/memfiles.html.

Fixes for ARC and ORC

 These fixes are no longer necessary for Nim V 2.0!

As we found out, the performance is currently disappointing, when we compile with --mm:arc or
--mm:orc. One easy way to fix that is when we use additional the compiler option -d:useMalloc. This
avoids using Nim’s own memory allocator, which seems to be slow when we compile with
--threads:on. The issue becomes very obvious due to the fact that the current implementation of the
splitLines() iterator calls subStr() for each yield, and subStr() does allocate a new string. Actually, it
is not really necessary to do a string allocation for each yield. As strings have value semantics, it
would be possible to reuse the same string — the lines() iterator does that. It is even possible to
avoid allocations at all, by using the openArray[char] data type as the result type for the iterator,
see https://forum.nim-lang.org/t/6968#43685. But actually, we do not need the splitLines() iterator
at all, we can again just use parseUntil():

import std/[threadpool, parseutils]

const
 FileName = "csvdata.txt"
 BlockSize = 1024 * 1024 - 1

type
 Res = object
 dist, count, state, vreg: string
 area: float
 pop: int

proc candidate(lines: string): Res =
 var
 res: Res
 j: int

440

https://nim-lang.org/docs/memfiles.html
https://forum.nim-lang.org/t/6968#43685

 l = newStringOfCap(127) # avoid reallocations
 result = Res(area: NegInf, pop: int.low)
 while true:
 j += parseUntil(lines, l, '\n', j) + 1
 if l.len == 0:
 break
 if l[0] != '#':
 var i: int
 i += parseUntil(l, res.dist, ',', i) + 1
 i += parseUntil(l, res.count, ',', i) + 1
 i += parseUntil(l, res.state, ',', i) + 1
 i += parseUntil(l, res.vreg, ',', i) + 1
 i += parseFloat(l, res.area, i) + 1
 i += parseInt(l, res.pop, i) + 1
 if res.pop > result.pop:
 result = res

proc main =
 var flowVarSeq: seq[FlowVar[Res]]
 var f: File = open(FileName, fmRead)
 while not f.endOfFile:
 var buf = newString(BlockSize) # passed as sink parameter to candidates()
 let res = f.readChars(buf)
 if f.endOfFile:
 buf.setLen(res)
 else:
 var i = res - 1
 while buf[i] != '\n':
 dec(i)
 inc(i)
 f.setFilePos(i - res, fspCur)
 buf.setLen(buf.len + i - res)
 flowVarSeq.add(spawn candidate(buf))
 assert buf[buf.high] == '\n'

 f.close

 var final = Res(area: NegInf, pop: int.low)
 for c in flowVarSeq:
 let h = ^c
 if h.pop > final.pop:
 final = h

 echo "Final result:", final

main()

This code, compiled with nim c --threads:on -d:release --mm:arc t.nim, runs in less than 36 ms.
With -d:useMalloc, we can save a few more ms. With --mm:orc, we get a runtime of 37 ms, which is
not that great. As you may have noticed, we have used only Res value objects in the code above, we

441

do not need references. This is possible, when we only compile with --mm:arc or --mm:orc, for
--mm:refc we would get the compile Error: cannot create a flowVar of type: Res. We have done one
additional modification — we allocate the buffer buf inside the while loop. This may look strange,
as we generally avoid allocations in loops. But as candidates() gets a copy of the buf string and ARC
uses move semantics and sink parameters, this may make sense. The compiler may pass the newly
allocated buf variable just to candidates(), instead of copying it. And we do not have to call
buf.setLen(BlockSize) at the end of the loop.

Use of malebolgia instead of threadpool

With some small changes in the main() procedure, we can use the code from above with the new
ᴍᴀʟᴇʙoʟɢɪᴀ module:

import malebolgia
import std/parseutils

const
 FileName = "csvdata.txt"
 BlockSize = 1024 * 1024 - 1

type
 Res = object
 dist, count, state, vreg: string
 area: float
 pop: int

proc candidate(lines: string): Res =
 var
 res: Res
 j: int
 l = newStringOfCap(127) # avoid reallocations
 result = Res(area: NegInf, pop: int.low)
 while true:
 j += parseUntil(lines, l, '\n', j) + 1
 if l.len == 0:
 break
 if l[0] != '#':
 var i: int
 i += parseUntil(l, res.dist, ',', i) + 1
 i += parseUntil(l, res.count, ',', i) + 1
 i += parseUntil(l, res.state, ',', i) + 1
 i += parseUntil(l, res.vreg, ',', i) + 1
 i += parseFloat(l, res.area, i) + 1
 i += parseInt(l, res.pop, i) + 1
 if res.pop > result.pop:
 result = res

proc main =
 var flowVarSeq = newSeq[Res](1000) # ugly
 var f: File = open(FileName, fmRead)

442

 var m = createMaster()
 var blocks = 0
 m.awaitAll:
 while not f.endOfFile:
 var buf = newString(BlockSize) # passed as sink parameter to candidates()
 let res = f.readChars(buf)
 if f.endOfFile:
 buf.setLen(res)
 else:
 var i = res - 1
 while buf[i] != '\n':
 dec(i)
 inc(i)
 f.setFilePos(i - res, fspCur)
 buf.setLen(buf.len + i - res)
 assert(blocks < flowVarSeq.len)
 m.spawn candidate(buf) -> flowVarSeq[blocks]
 inc(blocks)
 assert buf[buf.high] == '\n'
 f.close
 echo "Blocks: ", blocks
 flowVarSeq.setLen(blocks)

 var final = Res(area: NegInf, pop: int.low)
 for c in flowVarSeq:
 if c.pop > final.pop:
 final = c

 echo "Final result:", final

main()

Note that ᴍᴀʟᴇʙoʟɢɪᴀ was designed for Nim 2.0 with ARC or ORC memory management and may
not work with old refc memory management. When we compile the above code with option -d:dan
ger the program runs on our box (AMD Ryzen 9 5900HX, 8-core) with the original test data set in
less than 50 ms, which is a good value. One disadvantage of the ᴍᴀʟᴇʙoʟɢɪᴀ module with its -> oper
ator is, that we can not use add() to fill the sequence with the results, but have to pre-allocate a
large seq.

Note: All the example codes in this section are nearly untested. The intention of this section
was only to show you which strategies can be used to parse CSV files, and how the parsing
can be optimized and parallelized. The results seem to be reasonable, so we assume that the
example programs do, at least in principle, what was intended.

References

• http://callbackhell.com/

• https://journal.stuffwithstuff.com/2015/02/01/what-color-is-your-function/

443

http://callbackhell.com/
https://journal.stuffwithstuff.com/2015/02/01/what-color-is-your-function/

• https://en.wikipedia.org/wiki/Green_threads

• https://en.wikipedia.org/wiki/Continuation-passing_style

• https://github.com/status-im/nim-chronos

• https://github.com/mratsim/weave

• https://en.wikipedia.org/wiki/Lock_(computer_science)

• https://en.wikipedia.org/wiki/Comma-separated_values

[1] GPT-4 reply for prompt: Please give me a simple and short explanation for the term "memory-mapped file".

[2] https://forum.nim-lang.org/t/9688#63737

[3] A forward search for the start of the next line would be an option as well, but then we would need special care for the last
block. And with backward search, we have a motivation to introduce the setFilePos() function.

[4] --threads:on is the default option for Nim 2.0.

444

https://en.wikipedia.org/wiki/Green_threads
https://en.wikipedia.org/wiki/Continuation-passing_style
https://github.com/status-im/nim-chronos
https://github.com/mratsim/weave
https://en.wikipedia.org/wiki/Lock_(computer_science
https://en.wikipedia.org/wiki/Comma-separated_values
https://forum.nim-lang.org/t/9688#63737

Code execution with async/await
The async/await framework allows asynchronous code execution by use of only one single
thread — the currently active thread can suspend itself when waiting for data or other events.

Async/await is mostly used for IO-bound tasks, where a significant amount of time is spent waiting
for data to become available. In such a scenario, multi-threading, even when the various threads
run parallel on multiple physical CPU cores, would not really help to improve the throughput or
performance.

The initial idea of asynchronous operations was to avoid blocking the CPU for longer time periods
during slow network and IO (input/output) requests. Indeed, that made much sense in times, when
we read data from floppy disks or magnetic tapes and send data with 300 baud modems. And when
true parallel thread execution was not possible at all, as CPUs had only one core and computers
with more than one CPU were very expensive and not used by ordinary people.

Today, with network data rates of up to one Gbit/s for our smartphones or home networks, and SSD
devices, which have data transfer rates of multiple Gbit/s, it is not that easy to motivate the use of
asynchronous operations at all. Still, for server applications like online shops or communication
platforms used by thousands of people simultaneously, where network throughput is the limiting
factor and delays have to be avoided, the use of async/await may actually provide the best perfor
mance. And it can be combined with threading and parallel program execution when needed.

Asynchronous program execution can work with only one thread running on a single CPU core due
to the fact, that some hardware like network cards or disk controllers can read or write small data
blocks autonomously without active CPU support, using their own data buffers or writing to parts
of the system RAM by use of DMA (direct memory access). The hardware can signal to the CPU,
when buffers are full or empty, or when all data transfer is completed, so that the CPU may copy the
buffer content or start to process or display the data. Because these external hardware signals
interrupt the current CPU work, they are called hardware interrupts. Operating systems generally
provide various levels of support for these interrupt-driven data transfer operations, such as the
epoll framework of the Linux kernel, or Kqueue, the scalable event notification interface in
FreeBSD.

For user programs, one solution for doing asynchronous IO by watching for hardware interrupt sig
nals is to connect callback functions to these interrupt signals. That way, the program can launch an
IO operation, and perform other work, until that work is interrupted by a call of the callback func
tion. As most programming languages support the use of callback functions, this form of asynchro
nous IO is widely supported by software libraries, e.g. the Glib library of the GTK GUI toolkit. As
doing asynchronous IO with callback can get complicated when we have a lot of nested IO opera
tions, the async/await workflow was introduced, which allows asynchronous code to be written in a
synchronous style.

The async/await pattern is a syntactic feature of many programming languages, that allows an
asynchronous, non-blocking function to be structured in a way similar to an ordinary synchronous
function. It is semantically related to the concept of a coroutine and is often implemented using
similar techniques, and is primarily intended to provide opportunities for the program to execute
other code while waiting for a long-running, asynchronous task to complete, usually represented by

445

promises or similar data structures.[1] The programming language F# (pronounced F sharp) intro
duced asynchronous workflows with await points already in 2007 for version 2.0 of the language.
And in 2012 Microsoft released C# in version 5 with async/await support. Later languages like
Haskell, Python, JavaScript and TypeScript, Kotlin, Dart, Julia, Zig, Swift, and Rust used the
async/await pattern, and since 2020 it is also available for C++.

Is async/await faster than multi-threading?
For IO-bound tasks, the use of async/await can actually have performance benefits.

The multithreaded program execution, that we described in the previous sections, is some form of
preemptive multitasking, where switching between the active threads occurs at arbitrary time
intervals, controlled by the OS. But the async/await pattern is a form of cooperative multitasking,
which provides the user with full control of the code execution. We can pause the code execution by
using the await keyword when it really makes sense. e.g. when we have to wait for new data pack
ets or events, and immediately enable execution of a different code path.

As for this form of cooperative multitasking, only the code execution path is changed, but no
switching between threads is necessary, additional overhead can be avoided, and typical problems
of multi-threading, like the passing of data between different threads or race conditions, do not
exist.

So at least in theory, the cooperative multitasking controlled by the async/await pattern is more effi
cient, and for maximum performance, it can be combined with threading and parallel program
execution.

Nim’s asynchronous dispatcher
The core elements of Nim’s async/await framework are provided by the modules sᴛᴅ/ᴀsʏɴᴄᴅɪsᴘᴀᴛᴄʜ
and sᴛᴅ/ᴀsʏɴᴄғᴜᴛᴜʀᴇs.

These modules provide a dispatcher, a generic Future[T] type implementation, and the async
macro, which allows asynchronous code to be written in a synchronous style with the await key
word.

The ᴀsʏɴᴄᴅɪsᴘᴀᴛᴄʜ module implements a global dispatcher (technically one per thread), which is
responsible for running the procedures that are registered with it.[2]

Built on top of these two modules, there exist various modules for asynchronous communication:
Module sᴛᴅ/ᴀsʏɴᴄɴᴇᴛ implements a high-level asynchronous sockets API and sᴛᴅ/ᴀsʏɴᴄʜᴛᴛᴘsᴇʀᴠᴇʀ
implements a high-performance asynchronous HTTP server. Some other modules, like sᴛᴅ/ʜᴛᴛᴘ
ᴄʟɪᴇɴᴛ, support synchronous and asynchronous data transfers.

Nim’s async/await framework is not part of the language itself, but it is implemented with macros
and metaprogramming, and with the use of Nim’s iterators. The underlying implementation is
based on epoll on Linux, IO Completion Ports on Windows, and select on other operating systems.

Currently, Nim’s async/await uses only one single thread on its own, but applications can combine it
with multiple parallel running threads. As an alternative implementation, we could use

446

https://github.com/status-im/nim-chronos, which provides similar functionality.

Asynchronous procedures
Asynchronous procedures are marked by the {.async.} pragma and must return a generic Future[T]
type or return no result at all. In the latter case, a Future[void] is assumed. A Future, also called
Promise in other languages, is a generic container type, which holds a value that is not yet available,
but which may be available in the future. So a Future has some similarities with the generic FlowVar
type, that we used as return types for threads of Nim’s threadpool.

Inside asynchronous procedures, the keyword await can be used to call other asynchronous proce
dures or procedures that return a Future type.

The await keyword will suspend the code execution until the awaited Future completes. After com
pletion, the asynchronous procedure will resume its execution. During the period, when an asyn
chronous procedure is suspended, other asynchronous procedures will be run by the dispatcher.

The generic future[T] data type

The Future[T] data type, also called Promise, Delay or Deferred in other programming languages,
acts as a proxy for a result that is initially unknown or unavailable.

We can think of a Future[T] as a container. Initially, it’s empty, and while it remains empty, we can’t
retrieve its value. At some unknown point in time, something is placed in the container, and it is no
longer empty, and we can read out its value. That is where the name Future comes from.

Every asynchronous operation in Nim returns a Future[T] object, where the T corresponds to the
type of value that the Future promises to store in the future. We don’t have to know that many
details of the internal structure or behavior of the Future[T] data type, but we can easily experi
ment with it without involving any actual asynchronous I/O operations. The code below shows the
behavior of a simple Future[string] object:

import std/asyncdispatch

proc cb(f: Future[string]) =
 echo "executing callback: ", f.read

let f1: Future[string] = newFuture[string]()
echo f1.finished

f1.callback = cb

f1.complete("Nim and its future")
#f1.fail(newException(ValueError, "Future failed"))

We can create a new instance of the generic Future[T] data type with the newFuture[T]() construc
tor. We can query if the instance variable is already finished and attach a callback function. Finally,
we can call complete() on it to set its value, which then automatically calls the attached callback

447

https://github.com/status-im/nim-chronos

function. Or we can call fail() on it to set an exception, which later is raised when someone tries to
read its value.

Simple example
We will start our explanations with a very simple asynchronous program, which will not do an
actual asynchronous data transfer yet, but an asynchronous sleep (wait). The asynchronous sleep,
called sleepAsync(), actually behaves very similar to the asynchronous data transfer functions, that
is, the execution of the actual code path is suspended until a hardware condition is fulfilled, and the
dispatcher continues with the code execution.

import std/[asyncdispatch, times]
from std/os import sleep

let t0 = epochTime()

proc tick(t: string): Future[void] {.async.} =
 for i in 0 .. 1:
 os.sleep(100) # sleep 100 ms
 echo "tick ", t, ((epochTime() - t0) * 1000).int, "ms"

let f1: Future[void] = tick(" AAA ")
let f2 = tick(" BBB ")

echo "total time elapsed: ", epochTime() - t0

In the code example above, we import the ᴀsʏɴᴄᴅɪsᴘᴀᴛᴄʜ module and have attached the {.async.}
pragma to our tick() procedure. As the tick() proc does not return any actual data, we use
Future[void] as return type — actually, we could leave out the return type for this case. We call
tick() two times with different string arguments and use the function epochTime() to measure the
total execution time of our program. When we compile and run the code, we receive this output:

tick AAA 100ms
tick AAA 200ms
tick BBB 300ms
tick BBB 400ms
total time elapsed: 0.4007678031921387

The result is not really surprising, as for each call of proc tick(), the loop in its body is executed two
times, generating a 100 ms delay for each iteration. But the output will drastically change when we
call the sleepAsync() function provided by the ᴀsʏɴᴄᴅɪsᴘᴀᴛᴄʜ module, instead of the ordinary
sleep() function:

import std/[asyncdispatch, times]
from std/os import sleep

let t0 = epochTime()

448

proc tick(t: string): Future[void] {.async.} =
 for i in 0 .. 1:
 await sleepAsync(100) # suspend code execution for 100 ms
 echo "tick ", t, ((epochTime() - t0) * 1000).int, "ms"

let f1: Future[void] = tick(" AAA ")
let f2 = tick(" BBB ")

echo f1.finished, ' ', f2.finished
echo "time: ", epochTime() - t0

waitFor f1
waitFor f1 and f2 # wait for both futures to finish

echo f1.finished, ' ', f2.finished
echo "total time elapsed: ", epochTime() - t0

false false
time: 9.72e-05
tick AAA 100ms
tick BBB 100ms
tick AAA 200ms
tick BBB 200ms
true true
total time elapsed: 0.20061

The two calls of the tick() proc each return a Future[void] object nearly instantly; no waiting hap
pens here. The use of the await keyword in the procedure body causes the proc to suspend its exe
cution, and control flow returns to the call site immediately. But at the same time, the asynchronous
tick() proc got registered by the dispatcher loop so that it can resume its execution.

The returned Future object encapsulates the actual return type of the call — in this case only
void — and gives us a reference that we can use to ask the dispatcher whether our call has been
completed or not.

But futures can’t get resolved by themselves; we need to actually run the dispatcher in order for
any of the code registered with it to resume its execution. Remember, all of this is still running in a
single thread of execution. There are many ways to run the dispatcher, but in this case, it is done by
the waitFor call. When we run waitFor, the dispatcher will run in a loop until the given future is
completed, and the proc which has returned that future is removed from the dispatcher loop. The
function waitFor actually calls poll() in a loop until the future is finished, and then returns the
generic value of the future — in the code above, waitFor returns no actual result, as we used a
Future of void type.

We can use the operators and or or to combine multiple futures, in this way we can wait until all of
them or at least one of them completes. Note that the dispatcher loop stops when waitFor() suc
ceeds, so when we wait only for one future and that one is finished, then the dispatcher loop stops,

449

and other futures may stay unfinished.

We can use the function finished() to check if a future variable is already finished. When a future is
finished, it means that either the value that it holds is now available or it holds an error instead.
The latter situation occurs when the operation to complete a future fails with an exception. We can
distinguish between the two situations with the failed() function. Future objects can also store a
callback procedure, which will be called automatically once the future completes, see the example
in the previous section.

In our example code above, we called waitFor f1. This is necessary to actually execute the dis
patcher loop and to wait for the future f1 to complete. We could have used waitFor f1 and f2, or
waitFor f1 or f2 to wait for the completion of both futures or one of them. The result would be
identical in this case, as the proc that returns f1 and f2 is identical and returns always after 2 loop
iterations.

The important result of this modified code is that the proc execution alternates and the total run
time of the program is only 0.2 ms. The reason for this is, as we already explained, that use of the
await keyword in our tick() proc suspends the execution, and so immediately the next call of tick()
with "BBB" as an argument is executed.

As one more simple example, let us investigate this code where two different asynchronous procs
are executed:

import std/[asyncdispatch, times]

let t0 = epochTime()

proc numbers() {.async.} =
 for i in 1 .. 3:
 await sleepAsync(250)
 echo i, ' ', ((epochTime() - t0) * 1000).int, " ms"

proc letters() {.async.} =
 for i in 'a' .. 'e':
 await sleepAsync(400)
 echo i, ' ', ((epochTime() - t0) * 1000).int, " ms"

var
 n = numbers()
 l = letters()
echo "start: ", ((epochTime() - t0) * 1000).int, " ms"
waitFor sleepAsync(1500)
echo "done: ", ((epochTime() - t0) * 1000).int, " ms"

As both asynchronous procs use different arguments when they call sleepAsync(), they are not exe
cuted in strict alternation, so the numbers 2 and 3 are printed with no letter in between:

start: 0 ms
1 250 ms

450

a 400 ms
2 500 ms
3 751 ms
b 801 ms
c 1202 ms
done: 1501 ms

In this example, we do not call waitFor() directly on our actual asynchronous procs, but on sleepA
sync() from asyncdispatch. As the procedures numbers() and letters() got registered by the dis
patcher, they are executed by the dispatcher loop, but only as long as determined by waitFor sleep
Async(1500). So the execution of the dispatcher loop stops before letters() is fully executed, and let
ters d and e are never printed. The fact that the printed time values can be a few ms larger than the
actual specified sleep times should not surprise us, as additional code is executed in our procs, and
the dispatcher loop itself may require some minimal execution time. When an exact timing should
be required, we may use the sᴛᴅ/ᴛɪᴍᴇs module to read the exact time and adjust the actual delays.
Also note that async/await, as a cooperative approach to multitasking, also implies that long-run
ning tasks can unexpectedly delay the execution of other tasks. Imagine that in our code above, the
numbers proc contained a lot of additional code, which would take more than 250 ms to run — that
would disrupt the entire timing scheme. As async/await is most often not used to create actual
delays, but for asynchronous network and IO operations, we will not discuss the problems of exact
timing here in detail. The linked paper by P. Munch discusses this topic in greater detail and offers
some possible solutions for more accurate timings.

File download
The module sᴛᴅ/ʜᴛᴛᴘᴄʟɪᴇɴᴛ of Nim’s standard library provides procedures for synchronous and
asynchronous file transfer. Let’s start with this simple synchronous example to download two small
text files from a URI. You might need to compile the example using the -d:ssl option:

nim r -d:ssl t.nim
import std/httpclient
let client = newHttpClient()
echo client.getContent("http://ssalewski.de/tmp/texttestpage1.txt")
echo client.getContent("http://ssalewski.de/tmp/texttestpage2.txt")

We uploaded the two plain text files to that location in advance. When we compile and run the
above code, we should get:

This is a plain two
lines test page.

This is one more two
lines test page.

Nim’s API documentation for std/httpclient shows us how we can do the download in an asyn
chronous way — at least for one single file:

451

nim r -d:ssl t.nim
import std/[asyncdispatch, httpclient]
proc asyncProc(): Future[string] {.async.} =
 let client = newAsyncHttpClient()
 return await client.getContent("http://ssalewski.de/tmp/texttestpage1.txt")
echo waitFor asyncProc()

In this example, we use an asynchronous HTTP client, for which the overloaded proc getContent()
returns a Future[string] in this case. The call of waitFor waits for the download to finish and
returns the actual content of the future, which is a string containing the page content.

With the knowledge we gained from our previous example with sleepAsync(), we can easily modify
the above code to download two files asynchronously:

nim r -d:ssl t.nim
import std/[asyncdispatch, httpclient]
proc asyncProc(url: string): Future[string] {.async.} =
 return await newAsyncHttpClient().getContent(url)

let f1 = asyncProc("http://ssalewski.de/tmp/texttestpage1.txt")
let f2 = asyncProc("http://ssalewski.de/tmp/texttestpage2.txt")

waitFor f1 and f2 # this returns Future[void]
echo f1.read
echo f2.read

The combination f1 and f2 actually creates a new future of void type. We use two string type vari
ables, f1 and f2, and read the content with the read() proc when both futures are completed.

We can extend this program shape to asynchronously download multiple HTML pages:

nim r -d:ssl -d:release t.nim
import std/[asyncdispatch, httpclient, strutils, strformat, times]

const
 #Urls = "google.com duckduckgo.com wikipedia.com".split
 Urls = "ssalewski.de heise.de wikipedia.de".split

proc getHttpResp(client: AsyncHttpClient, url: string): Future[string] {.async.} =
 let start = epochTime()
 try:
 result = await client.getContent(url)
 stdout.write &"{url} - response length: {len(result)}"
 except Exception as e:
 stdout.write &"Error: {url} - {e.name}"
 echo fmt" --- Request took {epochTime() - start:.2f} seconds."

proc main =

452

 var transferred: int = 0
 let start = epochTime()
 echo "Starting requests..."
 var f: seq[Future[string]]
 for url in Urls:
 let client = newAsyncHttpClient()
 f.add(client.getHttpResp(fmt"http://www.{url}"))
 let res: seq[string] = waitFor all(f)
 for x in res:
 transferred += x.len
 let elapsed = epochTime() - start
 echo fmt("Sum of transferred data: {transferred} bytes. " &
 "({transferred.float / (1024 * 1024).float / elapsed:.2f} MBytes/s)")
 echo fmt"Requested {len(Urls)} websites in {elapsed:.2f} seconds."

main()

Here, we used the construct waitFor all(f) to wait until all the downloads are finished. For our
tests, we typically got only transfer rates of a few MB/s max. We currently don’t know the reason for
this; perhaps we should compare it to the Chronos framework.

References:

• https://stackoverflow.com/questions/75024325/nim-how-can-i-improve-concurrent-async-
response-time-and-quota-to-match-cpython

• https://github.com/status-im/nim-chronos

A chat server application
In the API documentation of the sᴛᴅ/ᴀsʏɴᴄɴᴇᴛ module, we find this example for a very basic chat
server application:

import std/[asyncnet, asyncdispatch]

var clients {.threadvar.}: seq[AsyncSocket]

proc processClient(client: AsyncSocket) {.async.} =
 while true:
 let line = await client.recvLine()
 if line.len == 0: break
 for c in clients:
 await c.send(line & "\c\L")

proc serve() {.async.} =
 clients = @[]
 var server = newAsyncSocket()
 server.setSockOpt(OptReuseAddr, true)
 server.bindAddr(Port(12345))
 server.listen()

453

https://stackoverflow.com/questions/75024325/nim-how-can-i-improve-concurrent-async-response-time-and-quota-to-match-cpython
https://stackoverflow.com/questions/75024325/nim-how-can-i-improve-concurrent-async-response-time-and-quota-to-match-cpython
https://github.com/status-im/nim-chronos

 while true:
 let client = await server.accept()
 clients.add client

 asyncCheck processClient(client)

asyncCheck serve()
runForever()

The purpose of a chat server is to allow multiple clients to connect to a running server. Then, all
messages that a client sends to the server are resent to all other connected clients. So one user can
talk to all the other connected users.

A chat server has to perform two primary tasks:

• Listen for new connections from potential clients

• Listen for new messages from clients that have already connected to the server

All the messages that the server receives will need to be sent to every other client that is currently
connected to it.

We do not have a working client app yet, but if you have the telnet program installed on your com
puter, you can already use it to test this server. Telnet sends messages unencrypted, so its use is
generally not recommended to send messages over the Internet, but for testing purposes on the
local net, we may use it. If the telnet app is not installed on your computer, you may install it with
the package manager of your OS — for Gentoo Linux, we would run "emerge -av telnet-bsd". An
alternative is the use of the busybox app, which provides telnet functionality as well.

If you have a telnet app available, you may open three terminal windows. On the first one, you
compile and run the server app — you will see no output in that window. In the other two termi
nals, type telnet localhost 12345. That should start the telnet app, which connects to our running
server. When you now type in some text, that text is echoed to both telnet windows:

$ telnet localhost 12345
Trying ::1...
telnet: connect to address ::1: Connection refused
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
We use Nim.
We use Nim.

^]
telnet> quit
Connection closed.

Note, that terminating the telnet app is not that simple — you may have to type CTRL] first, then

454

you get the telnet prompt, where you type quit to terminate the app.

Before we will try to explain the details of the above server app, we should summarize a few facts
about network communication. Then, at the end of this section, we will create a simple client app,
which you can use instead of telnet to send messages to the server.

Data transfer over a network

For our chat application, we will use the TCP protocol, with so-called network sockets as endpoints.
The use of sockets and the TCP protocol is a common practice in network communication. We will
not try to explain any details here, so citing some definitions from Wikipedia should be enough for
now:

A computer network is a set of computers sharing resources located on or provided by network
nodes. Computers use common communication protocols over digital interconnections to commu
nicate with each other.[3]

The Internet protocol suite, commonly known as TCP/IP, is the set of communications protocols used
in the Internet and similar computer networks. The current foundational protocols in the suite are
the Transmission Control Protocol (TCP) and the Internet Protocol (IP). The Internet protocol suite
provides end-to-end data communication specifying how data should be packetized, addressed,
transmitted, routed, and received.[4]

A network socket is a software structure within a network node of a computer network that serves
as an endpoint for sending and receiving data across the network.[5]

In Nim, a network socket is represented by the Socket data type, defined in the sᴛᴅ/ɴᴇᴛ module. We
can create new Socket instances with a call of newSocket(), or newAsyncSocket(), for synchronous
or asynchronous communication.

Sockets have some similarities with file descriptors — instead of file operations like read, write, and
open, for socket instances we have the operations recv(), send(), connect(), bindAddr(), and listen().
The functions recv() and send() are used to receive or send data packages.

TCP is a connection-oriented transport protocol that allows the socket to be used as a server or as a
client. A newly created TCP socket is neither, until the bindAddr() or connect() procedure is called.
The former transforms it into a server socket and the latter into a client socket.

By default, the newSocket() constructor will create a TCP socket, but we could pass more options to
the newSocket() constructor for other socket types, or to customize the socket instance.

As we want to create a non-blocking, asynchronous server app, we create our socket instance with
a call to newAsyncSocket() of the default TCP type. We then bind it with a call of bindAddr() to a
socket address, which is the combination of an IP address and a port number. The IP address is a
string, it may consist of four or six 8-bit numbers, each separated by a period, or of a symbolic
name like "google.com". As we aim to test our server only on our local network, we use the default
IP address 'localhost'. The port numbers are unsigned 16-bit numbers in the range from 0 to 2^16-
1, where the numbers 0 .. 1023 are reserved for special tasks, and can generally be used only with
administrator privileges. For a real-world app, the used port numbers are important, as server-
client communication works only when both use the same port number. For our experiments, we

455

will use the number 12345 from the initial example, as this one is easy to remember. As the Port
type is a distinct unsigned 16-bit data type, we have to use the notation Port(12345) for the second
parameter of bindAddr().

We will start our explanations with a simplified code example, where we have removed the send
ing of messages to all the clients, and we have replaced some new function calls like runForever()
or asyncCheck() with similar substitutes that we already know:

import std/[asyncnet, asyncdispatch]

proc processClient(client: AsyncSocket) {.async.} =
 while true:
 let line = await client.recvLine()
 if line.len == 0: break
 echo line

proc serve() {.async.} =
 echo "start serve()"
 let server = newAsyncSocket()
 server.setSockOpt(OptReuseAddr, true)
 server.bindAddr(Port(12345))
 server.listen()
 while true:
 let client = await server.accept()
 let f1: Future[void] = processClient(client)

let f: Future[void] = serve()
echo "back at main scope"
waitFor sleepAsync(320000)

We have two asynchronous procs, serve() and processClient(), which are both marked with the
{.async.} pragma and return a Future[void] instance each. Our program starts by calling the
serve() proc. That procedure creates an asynchronous socket, binds it to localhost and port 12345,
and starts listening for new connections. At the beginning of the infinite while true loop, await
server.accept() is called to accept new client connections. As no client tries to connect to the server
yet, control is immediately returned, and the message "back at main scope" is printed. Without the
waitFor statement in the last line of our code, our program would now terminate. It is very impor
tant to remember that the call of serve() does not only call that asynchronous proc but also add it to
the global dispatcher loop. And with the last line in our code, we actually start this dispatcher loop.
We have used waitFor sleepAsync(320000) instead of the original runForever() to make the code
look less foreign — running for 320 seconds should be sufficient for our initial tests. Note that as
long as no client connects to the server, proc processClient() is not executed at all. But when a client
connects, then processClient() is called for that client, and an instance of this processClient() proc
with the current client as an argument is added to the global dispatcher loop. This way, a new
instance of the processClient() proc is added to the dispatcher loop whenever one more client con
nects to the server. This results in each client having its own instance of a processClient() proc in
the dispatcher loop, which is executed periodically and can thus receive data for that client. This
way, all connected clients are served, although we do not have an actual list of all the clients that

456

we iterate!

The actual code in proc processClient() is not difficult: await client.recvLine() tries to receive a
textual message from the client, and gives control back to the dispatcher loop, when there is no
data available. And when there is data, then we just print it for now. Checking for a line length of
zero is sensible and necessary to determine when a client disconnects.

When we have managed to understand the simplified code from above, understanding the original
example is easy: We use a sequence with all the connected clients, as we want to forward each mes
sage that we get from one client to all the other connected clients. So the serve() proc adds each
new client to that seq and proc processClient() iterates over that seq and sends the received mes
sage to all the connected clients, followed by a "\c\L" to separate the messages. And instead of wait
For sleepAsync() runForever() is used, and instead of assigning the results of the procs serve() and
processClient() of Future[void] type to an unused variable, or to discard them, these results are
passed to asyncCheck. AsyncCheck is used to provide us with some error messages if something
goes wrong — it sets a callback on the future argument, which raises an exception if the future
should finish with an error state.

We hope that you do not wonder about the two infinite "while true" loops anymore — for the
async/await pattern, such loops make sense of course, as each await returns control back to the
global dispatcher loop. And the server would run this loop until it is terminated by CTRL-C or
another OS intervention.

We have intentionally left out some less important points in the above explanations: The call
of server.setSockOpt(OptReuseAddr, true) should prevent a common problem when apps
using sockets are terminated and restarted: Socket instances are not immediately removed by
the OS when an app terminates, as data packages for that socket may be still traveling. So a
restart of the app may produce an error message like "Socket address is already in use".
Another point is, that we used not the IP address string "localhost", but leave out that para
meter, which seems to default to the empty string in that case. Generally, the default should
be sensible, but you can test with "localhost" yourself to see if it makes a difference. Finally,
we append the string "\c\L" to the messages that we send out to all of our clients. That is a
carriage-return linefeed string, which is commonly used in network communication to sepa
rate messages. You may still wonder about the capital "L" — It should be identical to "\l",
which you can verify yourself.

The careful reader may also wonder if the initialization of the client list with clients = @[] is
really necessary. No, should not be necessary for recent Nim versions, maybe that is a legacy
from the old Nimrod days. And is the threadvar pragma in var clients {.threadvar.}:
seq[AsyncSocket] really needed? Our guess would be no, as the async/await pattern used in
this server app is executed only on the single main thread of the process. However, since we
are not sure, we have left it in.

The client application
The client has to connect to the server, and then watch for keyboard input from the user and for
the arrival of new messages from the server at the same time. So again we have to care to prevent

457

blocking operations. Unfortunately, reading user input in a terminal window is always blocking,
and there is currently no input method available that is directly supported by Nim’s async/await
framework. However, we have already presented a way to avoid the blocking behavior of the read
Line() procedure by using Nim’s threadpool library earlier in the book. We will use that method
again for the realLine() calls, and combine it with the async/await pattern for sending messages to
the server and for watching for other messages from the server. Actually, our client example pro
gram follows closely the client program from Mr. Picheta, the creator of Nim’s async/await frame
work, which he sketched in the Manning book years ago:

import std/[threadpool, asyncdispatch, asyncnet]

proc doConnect(socket: AsyncSocket, serverAddr: string) {.async.} =
 echo("Connecting to ", serverAddr)
 await socket.connect(serverAddr, Port(12345))
 echo("Connected!")
 while true:
 let line = await socket.recvLine()
 echo "Received Message: ", line

proc main =
 echo("Chat application started")
 var socket = newAsyncSocket()
 asyncCheck doConnect(socket, "localhost")
 var messageFlowVar = spawn stdin.readLine()
 while true:
 if messageFlowVar.isReady():
 asyncCheck socket.send(^messageFlowVar & "\c\l")
 messageFlowVar = spawn stdin.readLine()
 asyncdispatch.poll()

main()

The structure of this client implementation is a bit different from the server one. The main reason
is that we have to use Nim’s threadpool and spawn to avoid the blocking behavior of the readLine()
proc. Note that our main() procedure is not marked with the {.async.} pragma and contains no
await statement. Only the doConnect() proc, which connects to the server and then watches for
messages sent by the server, is marked with the async pragma and awaits the new messages. The
main() procedure creates the new asynchronous socket and then calls the asynchronous proc
doConnect(), which actually connects to the server and enters an infinite loop watching for mes
sages from the server. When doConnect() calls await, control flow returns immediately to our
main() proc. But doConnect() has become a component of the dispatcher loop, so its infinite while
loop with the await statement will gain control back later. In the main() procedure, we then use
spawn to execute readLine() on one thread of the threadpool, and enter a different infinite while
loop. This loop checks if user input is available, and calls poll() to ensure that the global dispatcher
loop is executed. If there is user input available, that message is sent to the server, and spawn is
called again waiting for the next user input.

Of course, you may wonder if this client structure really makes sense. At least it seems to work. But

458

you could be right — the use of spawn is an important component to avoid the blocking terminal
input issue, and the dispatcher loop doesn’t seem to contribute much.

Feel free to experiment with modified client app structures yourself.

Final remarks

Of course, whenever you intend to create a real-world chat application, there are a lot of other
tasks to solve and points to discuss: Is the client/server architecture really the best solution, or may
the clients just talk directly to each other, without the use of a central server? Then there is the
problem with the actual port numbers, as routers and firewalls may block that ports. And finally,
you may intend to send not only plain strings as we did, but structured messages — maybe add a
time and sender name to each message, and send the content encrypted over the Internet. For
encrypting the messages, you should find some ideas in Nim’s standard library, or in external pack
ages, and sending structured messages is not difficult: For example, we used the JSON format in an
earlier section of the book to save structured objects to disk and reload it later. The object content
was encoded as human-readable text, which you can send of course over the net without any prob
lems. You just have to define a protocol for the message exchange: Create Nim objects, that contain
all the data you want to exchange, like sender name, time, and the actual message content. Then
use one of the procs provided by the ᴊsoɴ module to encode the object before you send it, and
decode it again on the receiving side. The ᴊsoɴ module provides, for example, the % operator to con
vert various data types to JSON strings or JSON objects, and the parseJson() procedure to convert
the text string back into Nim data types. When you have some free time and are interested in that
topic, you can try that yourself, it should be not difficult. Maybe, we will give later in the last part of
the book a concrete example of such an app — but maybe that is just too trivial and boring? What
you may try as a small exercise is this: We send the verbatim message over the net — exactly what
the user typed in, and we send it to all clients, including the one who initially send it. So the sender
always gets an echoed copy of its input. A simple exercise for you would be to add a username to
each message so that all clients can see who wrote it. And you can use that username to identify
messages that you send yourself, to suppress the echoed copy.

Another interesting point is what actually happens when connected clients disconnect. There
should be at least one serious problem: The server stores all the connected clients in a list, and
sends messages to all of them. But what happens when a client vanishes? Sending messages to dis
connected clients is not really a good idea, so the server may remove clients from the list when they
disconnect or at least mark them as disconnected. And when do we have to call close() on a client
that is disconnecting? We have not used close() at all now. Should we use it in the server or in the
client app? We will not try to cover all these details in this book — when you really should intend to
do some form of network programming, you should consult some dedicated literature.

For a real-world Nim application for network data exchange, you may also investigate this Twitter
clone: https://github.com/zedeus/nitter

References:

• https://en.wikipedia.org/wiki/Asynchronous_I/O

• https://en.wikipedia.org/wiki/Async/await

• https://peterme.net/asynchronous-programming-in-nim.html

459

https://github.com/zedeus/nitter
https://en.wikipedia.org/wiki/Asynchronous_I/O
https://en.wikipedia.org/wiki/Async/await
https://peterme.net/asynchronous-programming-in-nim.html

[1] https://en.wikipedia.org/wiki/Async/await

[2] https://peterme.net/asynchronous-programming-in-nim.html

[3] https://en.wikipedia.org/wiki/Computer_network

[4] https://en.wikipedia.org/wiki/Internet_protocol_suite

[5] https://en.wikipedia.org/wiki/Network_socket

460

https://en.wikipedia.org/wiki/Async/await
https://peterme.net/asynchronous-programming-in-nim.html
https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Internet_protocol_suite
https://en.wikipedia.org/wiki/Network_socket

Concepts
Nim’s concepts are a form of constrained generics. They have some similarities to what may be
called traits or interfaces in other programming languages.

For the C++ programming language, concepts have been introduced for C++11 and have been
revised multiple times before formally being a required part of C++20.

These are the first two sentences in Wikipedia’s introduction to the C++ concepts:

Concepts are an extension to the templates feature provided by the C++ programming language. Con
cepts are named Boolean predicates on template parameters, evaluated at compile time.[1]

Note that C++'s templates are Nim’s generics, so you may replace the term "templates" in the above
statement with "generics" for Nim.

The Rust programming language uses the term traits instead:

Traits: Defining Shared Behavior

A trait defines functionality a particular type has and can share with other types. We can use traits to
define shared behavior in an abstract way. We can use trait bounds to specify that a generic type can
be any type that has certain behavior.[2]

Nim’s concepts have been redefined in 2019 and are now sometimes referred to as "new concepts".
They are described in the "experimental" part of the Nim language manual, and may still have
some issues. The syntax and semantics may potentially change a bit in the future, but it is expected
that they will remain part of the language.

In this section, we will try to give an easily understandable introduction to Nim’s concepts. If you
already have some experience with concepts, interfaces, or traits in other programming languages,
you may read the section in the Nim language manual instead. And of course, you should consult
that section later, when you really intend to use concepts, to learn about all the details and possible
future changes. The following explanations are based on the experimental section of the Nim lan
guage manual for Nim 1.9.1, which does not explicitly use the term 'new concepts' and has not yet
incorporated the new Self data type introduced for the 'new concepts'. At the end of this section, we
will reference the actual RFC (Request for Comments) for the 'new concepts' implementation.

Purpose of concepts
Modern programming languages care a lot for abstractions and code reuse. Functions like sort(),
max(), or iterator variants should work on as many data types as possible. So, sort() or max() could
work on all data types for which a cmp() or a < predicate is defined, and iterators like items should
work on all container types. People often aim to write DRY code. "Don’t Repeat Yourself" (DRY) is a
principle of software development aimed at reducing the repetition of software patterns, replacing
them with abstractions, or using data normalization to avoid redundancy.[3]

Some dynamic languages like Python or Ruby use the term Duck Typing for these kinds of abstrac
tions: Duck typing in computer programming is an application of the duck test--"If it walks like a duck

461

and it quacks like a duck, then it must be a duck"--to determine whether an object can be used for a
particular purpose.[4] Interpreted, dynamic languages may do all these type tests at runtime, while
statically typed, compiled languages like C++, Rust, D, or Nim do the test already at compile-time,
advertised by the term "Abstraction without overhead".

Nim’s concepts are also called "user-defined type classes" and specify a set of requirements that a
data type must have. Only when all the requirements are met ("match"), can that specific data type
be used as a parameter of a specific function or for other purposes.

Actually, Nim’s generic data types already allow most abstractions:

proc max[T](a, b: T): T =
 if a < b:
 return b
 else:
 return a

The procedure above works for all data types for which a < predicate is defined. We could restrict
that procedure to numeric parameters using a proc header, such as proc max(a, b: float or int):
auto. However, this method doesn’t allow all data types with a < predicate defined to be used as
parameters. Moreover, when we use the fully generic procedure from above, the user might pass
invalid parameters, such as an array or an object type with an unspecified < predicate, leading to
unhelpful compiler error messages:

proc mx[T](a, b: T): T =
 if a < b:
 return b
 else:
 return a

type
 O = object
 i: int

var o1, o2: O

let o = mx(o1, o2)

nim c t.nim

/tmp/hhh/t.nim(13, 11) template/generic instantiation of `mx` from here
/tmp/hhh/t.nim(2, 8) Error: type mismatch
Expression: a < b
 [1] a: O
 [2] b: O

Expected one of (first mismatch at position [#]):

462

[1] proc `<`(x, y: bool): bool
...

In fact, the compiler error messages in such cases are typically quite clear. And the < predicate
might not be a really good example for the use of concepts, as < is typically defined for most of
Nim’s data types, including sets and tables. But concepts allow us to express the constraints more
clearly, already visible in the procedure definition and resulting in even more clear compiler error
messages.

So let us define a Comparable data type that we can then use for our mx() procedure.[5]

The fundamental idea of Nim’s concepts is that we define a set of expressions for variables or
types: A data type matches the concept when all the expressions compile successfully and all
boolean expressions evaluate to true. So we can define a Comparable concept this way:

type
 Comparable = concept x, y
 (x < y) is bool

Comparable is a concept data type. The identifiers that follow the concept keyword represent
instances of data types that might or might not match this concept type. For the match test, we
employ two instance variables, x and y, to which we try to apply an infix < operator. If that expres
sion compiles and yields a boolean result, we state that the candidate data type matches this con
cept. We can apply this Comparable concept data type to the parameter types of our mx() procedure
and observe the outcomes when attempting to pass either matching or non-matching parameter
types:

type
 Comparable = concept x, y
 (x < y) is bool

proc mx(a, b: Comparable): Comparable =
 if a < b:
 return b
 else:
 return a

type
 O = object
 i: int

var o1, o2: O

let h = mx(1, 2) # integer types match, as they have an < infix operator defined
echo h
let o = mx(o1, o2) # no match, as we have not defined a < for O

463

The last line would not compile because the object data type O doesn’t have a < predicate defined.
By referencing the Comparable type definition or the error message, it may now be easier to under
stand the specific issue.

We can also define more complicated concepts. The language manual has an example of a Stack
concept:

type
 Stack[T] = concept s, var v
 s.pop() is T
 v.push(T)
 s.len is Ordinal
 for value in s:
 value is T

A generic Stack for data of type T needs a pop() and a push() function, both working on the T data
type, and a len() function that returns an ordinal result. Additionally, it must define an items() iter
ator that yields instances of the T data type.

A concept matches if:

• all expressions within the body can be compiled for the tested type

• all statically evaluable boolean expressions in the body are true

The identifiers following the concept keyword represent instances of the type currently being
matched. We can apply any of the standard type modifiers such as var, ref, ptr, and static to
denote a more specific type of instance. We can also apply the type modifier to create a named
instance of the type itself:

type
 MyConcept = concept x, var v, ref r, ptr p, static s, type T
 ...

Within the concept body, types can appear in positions where ordinary values and parameters are
expected. This provides a convenient way to check for the presence of callable symbols with spe
cific signatures:

type
 OutputStream = concept var s
 s.write(string) # test if the matched type has a write() proc with string
parameter

In a concept body, we can also utilize and test for types. We can directly use the named type
instances following the concept keyword (concept x, y, type T), and we can explicitly prefix data
types with the type modifier. The following example is taken from the 'Experimental' section of the
Nim language manual:

464

type
 # Let's imagine a user-defined casting framework with operators
 # such as `val.to(string)` and `val.to(JSonValue)`. We can test
 # for these with the following concept:
 MyCastables = concept x
 x.to(type string)
 x.to(type JSonValue)

 # Let's define a couple of concepts, known from Algebra:
 AdditiveMonoid* = concept x, y, type T
 x + y is T
 T.zero is T # require a proc such as `int.zero` or 'Position.zero'

 AdditiveGroup* = concept x, y, type T
 x is AdditiveMonoid
 -x is T
 x - y is T

We suppose that x.to(type string) and x.to(type JSonValue) should actually be x.to(string) and
x.to(JSonValue) instead. Please note that the is operator allows one to easily verify the precise type
signatures of the required operations, but since type inference and default parameters are still
applied in the concept body, it’s also possible to describe usage protocols that do not reveal imple
mentation details.

Much like generics, concepts are instantiated exactly once for each tested type, and any static code
included within the body is executed only once.

Note that, in the same way as generic procedures are instantiated for each used type, this also holds
for concept data types. So the use of concepts with many different matching types may produce
many proc instances and a large executable.

With the old concepts implementation, it was possible to test directly for the existence of object
fields. It is unclear whether the new concepts will directly support these tests. Perhaps we will
have to declare setter or getter procs or templates for these field tests.

Concept diagnostics
It is not always easy to understand Nim’s proc overload resolution, and using concepts may not
necessarily make it easier. It may occur in rare conditions that instead of a proc with concept para
meter types a different proc with an equal name is selected by the compiler. To get more detailed
compiler messages, Nim provides the explain pragma, which can be attached to concept data types
or to procs with concept parameters.[6]

Generic concepts
Concept data types can be parametric just like regular generic types. The Nim language manual
presents a generic concept for a 2D matrix type that can be used with arbitrary numeric base types.

465

Concept-derived values and concept refinement
The language manual also explains how existing concepts can be refined and how we can even
define constants and types inside a concept body.

Concept redesign 2019
The above descriptions are based on the experimental section of the Nim compiler manual for Nim
1.9.1 (RC 2.0) as available in early 2023. An RFC (Request for Comments) from 2019 suggested a con
cept redesign, which, while not explicitly mentioned in the Nim language manual, seems to have
been partly implemented already. The most noticeable change for these "new concepts" is that a
Self data type can now be used to refer to the concept type instance. The concept body consists
now mostly of a set of procs, which may use the Self data type. So we can now define a Comparable
type this way:

type
 Comparable = concept
 proc `<`(a, b: Self): bool

We will quote the complete RFC verbatim here for reference, including the suggested each T and
either orelse constructs, both of which are still unimplemented:

Atoms and containers

Concepts come in two forms: atoms and containers. A container is a generic concept like Iter
able[T], while an atom always lacks any kind of generic parameter (as in Comparable).

Syntactically, a concept consists of a list of proc- and iterator declarations. There are 3 syntactic
additions:

• Self is a built-in type within the concept’s body, representing the current concept. (Or perhaps
the data type that is being matched?)

• each is used to introduce a generic parameter T within the concept’s body that is not listed
within the concept’s generic parameter list.

• either orelse is used to provide basic support for optional procs within a concept.

We will see how these are used in the examples:

Atoms

type
 Comparable = concept # no T, an atom
 proc cmp(a, b: Self): int

 ToStringable = concept
 proc `$`(a: Self): string

466

 Hashable = concept
 proc hash(x: Self): int
 proc `==`(x, y: Self): bool

 Swapable = concept
 proc swap(x, y: var Self)

Self represents the currently defined concept itself. It is used to prevent recursion because proc
cmp(a, b: Comparable): int is invalid.

Containers

A container has at least one generic parameter, typically called T. The first syntactic use of the
generic parameter determines how T is inferred and bound. Subsequent uses of T are then checked
to ensure they match its bound value.

type
 Indexable[T] = concept # has a T, a collection
 proc `[]`(a: Self; index: int): T # we need to describe how to infer 'T'
 # and then we can use the 'T' and it must match:
 proc `[]=`(a: var Self; index: int; value: T)
 proc len(a: Self): int

No significant changes occur when we use multiple generic parameters:

type
 Dictionary[K, V] = concept
 proc `[]`(a: Self; key: K): V
 proc `[]=`(a: var Self; key: K; value: V)

The usual : Constraint syntax can be used to add generic constraints to the involved generic para
meters:

type
 Dictionary[K: Hashable; V] = concept
 proc `[]`(a: Self; key: K): V
 proc `[]=`(a: var Self; key: K; value: V)

each T

Note: each T is currently not implemented.

each T allows the introduction of generic parameters that are not part of a concept’s generic para
meter list. Furthermore, it is a special case designed to handle the common scenario where 'every
field must fulfill property P':

467

type
 Serializable = concept
 iterator fieldPairs(x: Self): (string, each T)
 proc write(x: T)

proc writeStuff[T: Serializable](x: T) =
 for name, field in fieldPairs(x):
 write name
 write field

either orelse

Note: either orelse is currently not implemented.

In generic code, it is often desirable to specialize the code in an ad-hoc manner, as exemplified by
system.addQuoted:

proc addQuoted[T](dest: var string; x: T) =
 when compiles(dest.add(x)):
 dest.add(x)
 else:
 dest.add($x)

If we want to describe T with a concept, we need some way to describe optional aspects. either
orelse can be used:

type
 Quotable = concept
 either:
 proc `$`(x: Self): string
 orelse:
 proc add(s: var string; elem: self)

proc addQuoted[T: Quotable](s: var string; x: T) =
 when compiles(s.add(x)):
 s.add(x)
 else:
 s.add($x)

More examples

 # system.find
 type
 Findable[T] = concept
 iterator items(x: Self): T

468

 proc `==`(a, b: T): bool

 proc find(x: Findable[T]; elem: T): int =
 var i = 0
 for a in x:
 if a == elem: return i
 inc i
 return -1

Sortable

Note that a declaration like

type
 Sortable[T] = Indexable[T] and T is Comparable and T is Swappable

is possible, but not recommended. This is because Indexable either contains more procs than neces
sary or includes accessors that are slightly off, as they do not offer the appropriate type of mutabil
ity access.

Here is the proper definition:

type
 Sortable[T] = concept
 proc `[]`(a: var Self; b: int): var T
 proc len(a: Self): int
 proc swap(x, y: var T)
 proc cmp(a, b: T): int

Concept matching

A type T matches a concept C if every proc and iterator header H of C matches an entity E in the
current scope.

The matching process is forgiving:

• If H is a proc, E can be a proc, a func, a method, a template, a converter, or a macro. E can have
more parameters than H as long as these parameters have default values. The parameter names
do not have to match.

• If H has the form proc p(x: Self): T then E can be a public object field of name p and of type T.

• If H is an iterator, E must be an iterator too, but E’s parameter names do not have to match and
it can have additional default parameters.

Escape hatch

Generic routines that have at least one concept parameter are type-checked at declaration time. To

469

disable type-checking in certain code sections, an 'untyped block' can be used:

proc sort(x: var Sortable) =
 ...
 # damn this sort doesn't work, let's find out why:
 untyped:
 # no need to change 'Sortable' so that it mentions '$' for the involved
 # element type!
 echo x[i], " ", x[j]

References:

• https://nim-lang.github.io/Nim/manual_experimental.html#concepts

• https://github.com/nim-lang/RFCs/issues/168

• https://www.jasonbeetham.com/codereuse.html

[1] https://en.wikipedia.org/wiki/Concepts_(C%2B%2B)

[2] https://doc.rust-lang.org/book/ch10-02-traits.html

[3] https://en.wikipedia.org/wiki/Don%27t_repeat_yourself

[4] https://en.wikipedia.org/wiki/Duck_typing

[5] We named the proc mx() instead of max() to ensure that there is no namespace conflict with the system module. Just to be
absolutely sure for this test…

[6] We have not been able to see an effect of that pragma.

470

https://nim-lang.github.io/Nim/manual_experimental.html#concepts
https://github.com/nim-lang/RFCs/issues/168
https://www.jasonbeetham.com/codereuse.html
https://en.wikipedia.org/wiki/Concepts_(C%2B%2B
https://doc.rust-lang.org/book/ch10-02-traits.html
https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://en.wikipedia.org/wiki/Duck_typing

Part VII: Appendix

471

Disclaimer and legal notice
This book has been prepared with the utmost diligence, attention, and care. However, the authors,
publishers, and any individuals involved in the preparation of this book do not provide any guaran
tee, warranty, or representation, whether explicit or implicit, regarding the accuracy, completeness,
or reliability of the information and contents presented herein.

The authors, publishers, and contributors shall not be liable or responsible, whether directly or
indirectly, for any loss, damage, injury, claim, or any other form of liability that may result from the
use, interpretation, or reliance on the information contained in this book. The reader assumes full
responsibility for the use of the information provided in this book.

This book may reference or mention trademarks, registered trademarks, or service marks that are
the property of their respective owners. These include, but are not limited to, Windows and macOS.
The use or mention of these trademarks in this book is purely for illustrative, educational, and
descriptive purposes and does not imply any affiliation with, endorsement by, or challenge to the
ownership of these trademarks by the authors, publishers, or contributors of this book.

Furthermore, any legal disputes arising from the content of this book or the use of the information
contained within it shall be governed by the laws of the country where the main publisher of this
book is based. Any claims, legal proceeding, or litigation arising in connection with the book will be
brought solely in the federal or state courts located in that country, and the reader consents to the
jurisdiction of those courts.

By choosing to continue to read this book or use the information contained within it, the reader
accepts this disclaimer in full.

This disclaimer is subject to change without notice and was last updated on the date of publication
of this book. Please check the latest edition of the book for any changes.

472

Acknowledgments
We extend our special thanks to Mr. Jim Wilcoxson (https://github.com/hashbackup), who diligently
proofread the initial pages of the book, offering valuable advice on English grammar and spelling.
Our appreciation also extends to Mr. Marek Ľach (https://github.com/marek-lach) for his keen eye
in rectifying numerous spelling and grammatical errors.

We are indebted to Dan Allen, the primary author of the Asciidoctor tool, for his invaluable assis
tance in fine-tuning the final layout of the HTML and PDF versions of the book.

We utilized languagetool.org software through the pyLanguagetool application for command-line
usage, which significantly helped in detecting numerous grammatical errors and missing commas.
We also used the free grammar-check browser extension from https://www.grammarly.com/ on
Firefox, as well as the online grammar checker from https://quillbot.com. These tools were particu
larly useful when reviewing longer prose sections.

Over the past three years, we received insightful advice regarding professional writing to ensure a
fluid style and formal tone. This included advice on breaking up lengthy sentences and substituting
terms such as 'but', 'so', and 'actually' with 'however', 'thus', and 'in fact' respectively. We were also
advised to exclude 'then' from most conditional clauses and to refrain from using potentially offen
sive terms like 'kids' and 'stupid'. In addition, we replaced numerous instances of 'may' with 'might',
and 'can not' with 'cannot', for improved accuracy.

Lastly, we utilized the GPT-4 model to check the grammar and suggest possible improvements.
Although it found only a few remaining issues, it offered several thousand suggestions for enhanc
ing the sentence structure to improve the readability and comprehension of the text. These sugges
tions were invaluable, and we have incorporated most of them into the book.

473

https://github.com/hashbackup
https://github.com/marek-lach
https://www.grammarly.com/
https://quillbot.com

Changes for Nim 2.0
After the release of Nim v1.0 in 2019 and Nim v1.6.14 in June 2023, on 01 August 2023 the long
awaited Nim 2.0 version was finally released. One of the defining features of Nim 2.0 is the adop
tion of the ORC memory management system as its default mechanism. While Nim 2.0 does not yet
support incremental compilation (IC), it comes with a new package manager called Atlas. Addition
ally, with the inclusion of the Malebolgia package, Nim 2.0 has improved support for concurrent
and parallel programming.

Although Nim 2.0 brings some important changes and improvements, there should be no serious
incompatibility issues between Nim 1.6 and Nim 2.0, and adapting older programs for Nim 2.0
should not be difficult, at least as long as the old programs don’t use any ugly hacks. Unfortunately,
with Nim 2.0 some incompatibility issues with other implementations like the https://github.com/
nim-works/nimskull may arise. The future will show if alternative implementations will try to be as
compatible as possible with the implementation of Rumpf, or if they will create language dialects or
even new languages with new names, like Cyo for Nimskull. We had a similar case already for mod
ules of Nim’s standard library, which have been partly replaced by incompatible, improved vari
ants created by Status Corporation (e.g. https://github.com/status-im/nim-taskpools and
https://github.com/status-im/nim-chronos) and other Nim contributors.

While we have touched upon several features of Nim 2.0 throughout this book, the subsequent sec
tions will provide a concise summary of the pivotal changes introduced in this version.

ARC/ORC memory management
Initially, Nim used a traditional garbage collector for automatic memory management, similar to
how most other high-level programming languages do. For time-critical or resource-limited sys
tems, traditional garbage collectors have some serious disadvantages like fully blocking the system
for a few milliseconds, or releasing resources late and needing a lot of memory. Early Java imple
mentations suffered from this, and for this reason, some modern high-performance languages such
as Rust, Zig, or Jai do not use automatic memory management at all. Languages like Nim and VLang
tried to find automatic memory management strategies that avoided the disadvantages of tradi
tional garbage collectors. And Nim was successful already, while Vlang seems to have some miles to
go still. ARC is a deterministic, destructor-based memory management system: As soon as refer
enced, heap-allocated objects go out of scope, so that they can no longer be accessed by any refer
ence, the heap object is immediately freed. This works very well, as long as the referenced objects
build no cyclic structures, e.g. in graphs like the triangulation of a surface, where all the vertices
and edges may have neighbor references. To handle cycles, the ORC memory handler was created
and is now the default. For many applications, it is not really important if the traditional refc GC
system or ARC/ORC is used. REFC may still have small performance benefits, but ARC/ORC works
very well for critical applications. With ARC/ORC a Nim program should behave like one with only
manual memory management, without all the disadvantages of pure memory management like
double-frees, dangling pointers, or memory leaks. When your program uses no cyclic data struc
tures, you can now use arc. When you know that you use cycles, like for a Delaunay triangulation,
you should use orc to ensure that all unreferenced objects are really released immediately. Pro
grams compiled with the option --mm:orc are typically 10 KB larger than those compiled with
--mm:arc. Both options generate significantly smaller executables than --mm:refc. For performance-

474

https://github.com/nim-works/nimskull
https://github.com/nim-works/nimskull
https://github.com/status-im/nim-taskpools
https://github.com/status-im/nim-chronos

critical programs, it is always a good idea to do some testing, as refc or maybe even one of the other
GC options like Boehm may give a larger throughput. Currently, Nim cannot report if ARC is suffi
cient, or ORC is needed due to cyclic references. So you may have to do some tests if you are not
sure, like setting all the references at the end of a proc to nil, and then calling GC_fullCollect() and
GC_getStatitics() to monitor the still-occupied memory resources.

Default values for object fields
Nim initializes variables to binary zero by default, and this applies to object fields as well. Before
v2.0, it was not possible to specify other default values for object fields in the type definition. Nim
2.0 allows this now finally in the same way as we can do it for plain variables. We used this feature
already in section The Prim algorithm where we set the dist field of our Vertex type to math.Inf,
indicating that we have not yet found a neighbor.

type
 Vertex = ref object
 x, y: float
 friend: Vertex
 dist: float = Inf

Default values for object fields are useful whenever the default zero is nonsensical or may even
cause a runtime exception. This could be the case for the denominator of a fraction, or a scaling
parameter, which generally defaults to 1 or 100 percent, not zero.

Note that custom default values for object fields are only applied, when we explicitly initialize a
variable by use of an object constructor, or when we use the default() function for the initializa
tion. A plain variable declaration like var c2: Computer always initializes all fields to binary zero.
This behaviour could be surprising, and perhaps it would be a good idea when the compiler gives a
warning when for objects with default field values a plain declaration like var c2: Computer is
used.

Overloadable enums
Before Nim 2.0, using enumerations in larger programs could be very verbose, as different enum
types could have members with the same name, so that we had to use the pure pragma and prefix
the enum value with the type name. To avoid this, some modules used values with a prefix, like
nkProc. In section Enumeration types we had two enums with a few common values:

type
 TrafficLight {.pure.} = enum
 red = "Stop"
 yellow = (2, "Caution")
 green = ("Go")

type
 BaseColor {.pure.} = enum
 red, green, blue

475

var caution: set[TrafficLight] = {TrafficLight.yellow, red}

echo caution # {Stop, Caution}

For Nim 2.0, the compiler is smart now and knows that in {TrafficLight.yellow, red} the red value is
also from the TrafficLight data type, so we do not have to use the type name prefix. The {.pure.}
pragma is not needed anymore, and the compiler is really smart: Only a statement like "var caution
= {red, blue}" would obviously not compile without type prefixes for one of the values.

CString limitations
Nim’s strings are mutable value objects that have length and capacity properties and adhere to
copy semantics. As the actual Nim string data buffer is heap-allocated and NULL-terminated, it is
compatible with the string data type in the C language, which is basically a pointer to a character
(*char). In early Nimrod, we often used the Nim cstring data type as an alias for a string in the C
language. In modern Nim, cstring stands for compatible string, which is a string that is compatible
with the C and JavaScript backends. In Nim 2.0, cstrings have become second-class citizens. We can
use cstrings as parameters of C library functions without problems, but when we pass a variable of
cstring data type to an ordinary Nim proc, we get a serious warning:

proc callCLib(s: cstring) =
 discard # call a C library

proc indirectCallCLib(s: cstring) =
 callCLib(s)

var a = "Test"
indirectCallCLib(a)

Warning: implicit conversion to 'cstring' from a non-const location: a; this will
become a compile time error in the future [CStringConv]

This may be justified, e.g., because cstrings cannot grow and because modifying a cstring may inval
idate the initial Nim string. But at the same time, this behaviour is a problem, when we call C libs
indirectly by use of trampoline procs. We get the above warning, and the program may no longer
compile in the future. A possible fix is to pass ordinary Nim strings to the trampoline proc. But this
introduces some overhead, as we are passing an object instead of a plain pointer. Most importantly,
we can no longer pass nil/NULL to the C library. However, for some C libraries, nil/NULL is very dif
ferent from an empty string.

StrictDefs
In Nim, variables are generally initialized with binary zero, that is, zero for numerical values, nil
for references and pointers, and "" for strings. With Nim 2.0, we can use the strictDefs pragma,

476

which seems to be currently only available in the form {.experimental: "strictDefs".}, to enforce the
explicit initialization of variables:

{.experimental: "strictDefs".}

proc main =
 var a: int
 echo a
 let b: int
 if a == 0:
 b = 1
 else:
 b = 2
 echo b

main()

Compiling the above code would now give the warning:

Warning: use explicit initialization of 'a' for clarity [Uninit]

This may even be the default later. Again, the compiler is smart and does a detailed code analysis:
When we assign in each possible code path a value to a variable, then there is no warning. This
works now even for the let statement, as in the above example.

Out parameters
In Nim versions before 2.0, we could pass uninitialized var parameters to procs, which then initial
ized that variable. Although this was generally avoided for pure Nim functions, where we use func
tion return values to pass values back to the caller, this pattern is sometimes used in C libraries.[1]

To enforce the initialization of parameters passed uninitialized to a procedure, Nim 2.0 has intro
duced out parameters:

proc p(i: out int) =
 discard # i = 0

proc main =
 var n = 1
 p(n)
 echo n

main()

Compiling the above code results in this warning:

Warning: Cannot prove that 'i' is initialized. This will become a compile-time error

477

in the future. [ProveInit]

The reason is obviously that proc p does not assign a value to the out parameter i.

StrictFuncs
When we pass parameters to procedures and functions that should be modified in the proc body,
we have to use the var keyword to make the parameter mutable. For beginners, it was sometimes
surprising that when we passed reference parameters to a proc, it was allowed to modify fields of
ref objects, also when the ref object was not passed as a var parameter. So the var keyword was
only needed to change the ref itself, e.g., to exchange or initialize a ref to an object. With the new
definition of the StrictFuncs pragma in Nim 2.0, we can ensure for functions that fields of ref
objects cannot be mutated in a function.

{.experimental: "strictFuncs".}

type
 R = ref object
 i: int

func p(arg: R): bool =
 arg.i = 0

var r = R()
discard p(r)

Compiling this example now gives the message:

Error: cannot mutate location arg.i within a strict func

Unicode operators
In Nim 2.0, we can use a few Unicode operators; see https://nim-lang.github.io/Nim/manual.html#
lexical-analysis-unicode-operators for details. When we create mathematical libraries, this may
result in cleaner code; for example, we could use Unicode symbols for the cross-product of vectors.
Entering these Unicode symbols can be difficult. In section Entering Unicode characters we learned
how to type in Unicode symbols. You may also find the Linux (Gnome) tool gucharmap useful:
Launch the tool, select View/By Unicode Block from the menu, and then select Mathematical Opera
tors.

proc `∘`(a, b: int): int =
 a * b + 1

echo `∘`(1, 2) # 3
echo 2 ∘ 3 # 7

478

https://nim-lang.github.io/Nim/manual.html#lexical-analysis-unicode-operators
https://nim-lang.github.io/Nim/manual.html#lexical-analysis-unicode-operators

Unnamed break in a block
Using a plain break statement in a block gives a warning in Nim 2.0. This warning may become an
error in future Nim versions. We may use a named block with a named break statement to over
come this issue:

block:
 echo 1
 break # warning, later an error
 echo 2

block t:
 echo 3
 break t # OK
 echo 4

[1] Note that in the C language, a function can return only one result parameter, but not tuples of multiple parameters as in Nim.

479

Changes for Nim > 2.0
For Nim 2.2, we might finally get the incremental compilation.

References:

• https://github.com/nim-lang/RFCs/issues/503

480

https://github.com/nim-lang/RFCs/issues/503

Nimble package manager

Note: As its position in the appendix already indicates, this section had a hard time making it
into the book at all and will be the first to be removed if the (printed) book becomes too
heavy. You may remember that we said in the introduction this book would not cover the
Nimble package manager at all. Indeed, there are good reasons to leave Nimble out — Nimble
isn’t the only package manager, and it’s already explained in the Manning book and the
GitHub README. Also note that this section is written by someone with only very basic
knowledge of the Git version control system, and most content is based on old memories and
has not been tested. Testing a new GitHub registration process is not easily possible, as one
would need a valid but still unused email address for registration, and one would have to
delete the account after the test.

Nimble, initially called Babel, is Nim’s default package manager, which is currently shipped
together with the Nim compiler, and can be used to install additional Nim packages. Nim packages
are collections of Nim modules and other related files, which have been created to serve a special
purpose or to solve a special task, and have been made available to other Nim users. Nim’s pack
ages are usually distributed in the form of Nim source code modules, which are used as libraries.
But packages can also contain complete application programs, and may even contain pre-compiled
executables. In Part IV of the book, we have already used the library packages nim-regex and cli
gen. An example of a package containing a complete application is the c2nim tool, which can con
vert C source code to Nim code. You can find a longer introduction to the Nimble package manager
in the Manning book, and a detailed description on the Nimble GitHub page. As the GitHub page is
not really intended as an introduction, and as some people may not have a copy of the Manning
book, we will give a short introduction to Nimble, which includes its use to install packages, as well
as the creation and distribution of packages.

Purpose of package managers
Package managers are used to install software on single computers or whole computer networks.
The software to install can be libraries, which will be used by other programs, or applications,
which can be run by the user.

Packages and package managers can be divided into two categories: Most Linux distributions have
one or more package managers closely coupled to the OS, which are used to install libraries and
executables for that OS. These package managers are usually executed by a user with administrator
rights and install the software system-width, in a way that all users of that computer can access it.
Most well-known tools and libraries like Firefox, Gimp, GCC, CGAL, BOOST, and GTK are installed
this way. The other category includes package managers that are strongly coupled to a single pro
gramming language and help users install tools or libraries for that language. These package man
agers are mostly used by the user directly without administrator privileges and install the software
for this user only — other users of the computer would not notice the installation at all. Well-known
examples of this latter kind of package managers are pip for Python, npm for JavaScript, Gem for
Ruby, and finally Nimble for Nim.

Package managers do not only simplify the installation, update, and de-installation of software, but

481

they may also install dependencies and resolve versioning conflicts: When we intend to install a
package A, that package may require again packages B and C, which may again require other pack
ages. Most package managers, including Nimble, can resolve and install dependencies for us auto
matically. A big problem can occur when packages are available in multiple, incompatible versions.
A common practice is to assign version numbers to packages — these version numbers are typically
built of three parts, each separated with a period, like 1.2.14. Larger numbers indicate a newer
package version. A common scheme for version numbers, called semantic versioning, labels the left
most number as the major version, the second number as the minor version, and the rightmost
number as the patch level. The rightmost number is increased for each tiny change of the software,
e.g. for small bug fixes. The minor version number is increased for larger changes, e.g. when new
functionality is added. And the major version number is only increased, when there are drastic
changes, that is when the API has changed, perhaps due to a complete rewrite of the library. A
major version number of zero often indicates, that the package or library is still in development,
and not really considered mature — but there are many exceptions to this rule, many packages,
libraries, or tools seem to never reach a major version 1, but still work very fine. On the other hand,
a major version greater than zero can indicate some stability promises — the API should not change
that much anymore, and the authors may have the feeling, that the software works reliably. But this
is very subjective — after reaching a version 1.0, the development process may just stop, as the
authors are exhausted, or soon after a 1.0 release, development of a 2.x version may start, with a
completely new API design. So the 1.x version may be stable but will become legacy soon. A special
aspect of version numbers is, that sometimes the major version number is increased from zero to
one just to indicate some stability promises, so the content of version 0.9.7 could be nearly identi
cal with version 1.0.

Unfortunately, even tiny bug fixes for packages or libraries, for which the major and minor version
does not change, can already generate some trouble, as the fix may change the behavior of the
package, and our application program, which uses this package, may be sensitive to this change.
But these issues are easily fixable. More serious issues may arise when we create larger applica
tions, that have to use multiple packages: A package A can be available in two incompatible major
versions 1.7 and 2.1. And our software may depend on two external packages called B and C, where
package B requires package A in version 1.7, but package C requires package A in a version >= 2.0.
This is a serious problem, which can be unresolvable. For OS-bound package managers, this is a
common concern. It can be solved when package updates are bundled, so that when a package
changes its major version, all packages that require it, are also updated. Another possible solution
is, that for dynamic libraries multiple versions are installed in parallel, or that multiple package
versions are installed in so-called slots, which can coexist on the same computer. A prominent
example is the GTK GUI toolkit, which can be installed in a 3.0 and a 4.0 slot. But that is in no way
free from issues — an actual example in early 2022 is libsoup, which is currently available and used
in incompatible 2.x and 3.x versions.

For package managers like Nimble, which provide only packages related to a programming lan
guage, version conflicts are not that likely, but when we create really large applications, which
require a lot of external packages, version conflicts may occur. The package manager may help us
to resolve these conflicts by attempting to select a set of package versions, that are compatible.

Nimble can work with local packages that are stored on the user’s file system, and with external
packages provided by repository hosting services. Nimble uses as the foundation for external pack
ages Distributed Version Control Systems (DVCS) like Git or Mercurial, and the packages are hosted

482

on online platforms like GitHub or GitLab.

While Nim uses currently no dedicated central package repository, it supports a centralized list
with package names and some metadata. We can upload our own packages to hosting servers and
register the package, to allow others a very easy installation. For registered packages, the command
nimble install package_name downloads and installs the package for us. Other packages, that are
available somewhere on the Internet, but are not yet registered in Nim’s package database, can be
downloaded and installed similarly, but we have to specify the full path to the package, like
https://github.com/stefansalewski/gintro.git.

Nimble can also be used to install packages, that are locally stored on our computer, this includes
packages that we have manually downloaded from the Internet, or packages that are not saved on
a remote location at all.

Nimble packages are basically plain directories, which have to include a special text file, which
name is constructed from the package name and the .nimble extension. These files are sometimes
called .nimble files and provide some metadata about the package, including the current version,
the license, dependencies, and a short textual description. The .nimble files use a Nim-based file for
mat that supports a subset of Nim’s features. We can define variables and procedures in .nimble
files and import other modules.

The directory structure of a valid Nimble package has to follow a well-defined shape, which we will
discuss later in detail. When we have a valid local package directory somewhere on our file system,
then we can cd into it and call nimble install to install that package, without having to download
all the files (again) from a remote server. This installation from an existing directory saves us not
only the download, but also allows us to fix the package before the installation. Maybe the package
needs some tiny fixes to compile and work with the latest compiler version?

Note: Nimble may use the Git tool to download Git repositories, so the nimble command may
not work properly when Git is not installed on your computer. As you will need the Git tool in
any case, you should ensure that it is installed, and install it if it is missing. To check if Git and
Nimble are available, you may execute in a terminal window these commands: git --version
and nimble --version

As a concrete example, we will show the three ways in which we can install the RTree package:

nimble install rtree
nimble install https://github.com/stefansalewski/RTree.git

cd /tmp
git clone https://github.com/stefansalewski/RTree.git
cd RTree
nimble install

This works, as the RTree directory has a valid structure, and because it includes a valid package
specification called rtree.nimble:

483

https://github.com/stefansalewski/gintro.git

/tmp/RTree $ tree
.
├── LICENSE
├── README.adoc
├── rtree.nimble
├── src
│ ├── drawingarea.nim
│ └── rtree.nim
└── tests
 ├── config.nims
 └── test.nim

/tmp/RTree $ cat rtree.nimble
Package

version = "0.2.0"
author = "Stefan Salewski"
description = "R-Tree"
license = "MIT"
srcDir = "src"

Dependencies

requires "nim >= 1.0.0"

skipFiles = @["drawingarea.nim"]

When we install a package with Nimble in one of these three ways, Nimble copies the module files
to a location where the Nim compiler can easily find them — for the RTree example from above,
this is ~/.nimble/pkgs/rtree-0.2.0/ for Linux. Sometimes it is useful to launch the nimble command
with the --verbose flag, which displays a lot of additional information, including the location where
the module files get installed.

Another useful command of the Nimble tool is the search command, which searches in Nim’s cen
tral package list for packages marked with tags indicating their purpose. We may search for terms
such as GUI, PNG, mp3, etc. We can combine the search command with the --ver flag to get all the
versions of the packages listed, like nimble search GTK --ver.

Creating and publishing Nimble packages
For creating new packages, we can create the folder structure and the .nimble file manually, maybe
by copying an existing package and editing it, or we can use the nimble init command. When we
use nimble init, we can first create a folder, cd into that folder, and call nimble init, or we let Nim
ble create the folder by specifying the folder name like nimble init MyTest. Nimble will ask a few
questions and create the folder structure for us. You should test this exercise now, to get a feeling
for the process. Simply navigate to a temporary directory, such as /tmp on Linux, and enter the com
mand nimble init MyNewPkg.

484

nimble init MyNewPkg
... accepting all the defaults results in

/tmp $ tree MyNewPkg/
MyNewPkg/
├── MyNewPkg.nimble
├── src
│ ├── MyNewPkg
│ │ └── submodule.nim
│ └── MyNewPkg.nim
└── tests
 ├── config.nims
 └── test1.nim

cat MyNewPkg/MyNewPkg.nimble
Package

version = "0.1.0"
author = "Stefan Salewski"
description = "A new awesome nimble package"
license = "MIT"
srcDir = "src"

Dependencies

requires "nim >= 1.7.1"

We immediately see a tiny issue: Nimble accepts the package name with upper case letters and uses
it for the module name. But by convention, module names should be all lowercase for Nim. We can
manually fix that, or use a package name with all lowercase letters. For most packages, names with
only lowercase letters should be OK, but sometimes we may like to have package names like RTree.
Note, that the package name itself and all the file and folder names of the package should not con
tain hyphens or the at symbols ('-', '@') — the minus sign is generally not allowed for Nim symbols,
and the @ has a special meaning for Nimble.

It is important that the created directory structure contains the .nimble file and a src folder. When
our whole package consists of only one module, that file would be MyNewPkg/src/mynewpkg.nim,
and we would not need the subdirectory MyNewPkg/src/MyNewPkg. After installation of the pack
ages, we could use the module then just as import mynewpkg. For the case that our package consists of
multiple files, we put the files in the folder MyNewPkg/src/mynewpkg, and import the files as import
mynewpkg/[mod1, mod5].

Another sometimes useful functionality of Nimble is that we can define tasks at the end of .nimble
files, like

task test, "Run the packages tests!":
 exec "nim r tests/mytest.nim"

485

This allows us to execute nimble test from within the package directory to compile and run pack
age tests.

Public packages
Currently, most external Nim packages are hosted on GitHub. However, other Git platforms such as
GitLab should also work with Nimble. In principle, even the Mercurial format should be supported.

As GitHub is currently very popular, we will briefly explain how you can create public Nim GitHub
packages. First, you need a GitHub account, which you can create easily by following the instruc
tion on their homepage at GitHub.com. You require your username, and a valid email address, and
you have to select a password for your GitHub account. As of August 2021, GitHub requires the use
of personal access tokens instead of passwords when modifying repositories. In the case that
GitHub has not asked you to create an access token during the initial registration, you have to cre
ate one now, before you can continue. The GitHub page or a search engine should provide detailed
instructions on how to create a personal access token. The token is a long ASCII string, which you
may store in some file, and paste in later when GitHub asks for passwords during uploading files.
Later, you can save the token in the local git database somehow, which may save you from the
copy/paste process.

When you have an account, you can easily create new public repositories following the instructions
on the GitHub page. Let us assume you have created a repository named fft, a package to support
the fast Fourier transform. Then you can download that Git repository using this command:

git clone https://github.com/yourname/fft.git

To turn this repository into a valid Nimble package, you need to at least create the subdirectory
src/fft and a fft.nimble file. You can do this manually, or you can do it with nimble init fft or cd
fft; nimble init.[1] If your package consists of only one file, you should call it fft.nim, and copy it
into fft/src/. Or, if you have multiple files, create a directory fft/src/fft and copy the files to that
location, maybe with file names fft.nim and ffpsup.nim. As you have modified the local repository
folder, it is not consistent anymore with the remote repository. You can check that with the com
mand git status executed inside the folder. To make it consistent again, you have to push your
changes to the GitHub server, which can be done with these commands:

git add -A
git commit -m "created initial Nimble file"
git push origin main
git status

The command add -A adds all the created files and directories to the Git content, the commit -m com
mits the changes with the specified message, and finally push origin main uploads all the modifica
tions to GitHub. The push command will ask you for your GitHub username and password — for
the password, you should use the access token we’ve previously mentioned. When you now visit
the GitHub page of your remote repository, you should see the changes.

486

Other people can now already install your package by

nimble install https://github.com/yourname/fft.git
or with
git clone https://github.com/yourname/fft.git
cd fft
nimble install

Whenever you create or update a package, you should care for possible dependencies and the
required compiler version. The requirements field of the .nimble file lists all the dependencies, like
requires "nim >= 1.6.0", regex, bigints. Nimble supports the command c, which can be used from
within a package directory, and which we can use to compile the package, and verify the require
ments: While the command nim c myapp.nim always searches for libraries at all known locations
(current folder, Nimble packages, and standard library), the command nimble c myapp.nim first
check the requirement field of myapp.nimble, and refuses to use nimble packages that are not listed
under requirements. On the other hand, when an external package is listed under requirements
but is not yet installed, then the nimble c command tries to install it.

If you think your package could be really useful for many other Nim users, you may decide to pub
lish your package, which is to say, add it to Nim’s central package list. This can be done in two ways:
You can just call from within your package folder the command nimble publish. You will then be
asked for some information, such as a list of tag names and a description, after which the publish
ing process should begin. After manual approval by some Nim devs, which checks if your package
has a valid structure and its name does not conflict with existing packages, your package gets added
to the official package list. Unfortunately, the nimble publish command has failed for some people
in the past. So you may prefer to publish your package manually by creating a pull request at the
package list repository.

After successful publication, people can download your package just by using its name, as in nimble
install fft. This publishing process can be a bit complicated, but it is necessary only once: It is not
necessary to publish the package again when you update the package.

When you intend to create a public package, that is used by a lot of people and that is regularly
updated, it may make some sense to create tagged versions of your package. That way people will
be able to easily install an older version, in case they have issues with the most recent version, and
other packages, that may use your package, can require the version that they need. Currently, creat
ing tagged versions with Nimble is a bit complicated, as you have to update the version in the .nim
ble file first: Actually, the correct procedure to add a (new) tag is:

• Update all the files of your packages, which includes all the modules and the README file.

• Update the version field in the nimble file.

• Upload all your modifications to GitHub, with an action sequence like

git add -A
git commit -m "new version v0.2.1"
git push origin main

487

Now, after you have uploaded all modified files, including the nimble file with the version field
updated to this new version, you can create a new tag and push the actual version tags to GitHub:

git tag v0.2.1
git push origin --tags

Now, other users will get this new version by default, but they can still install older versions. For
testing purposes, you can always push modified module files to GitHub, without creating a new tag.
These changes will be invisible to most users; only those who explicitly request the latest changes
with the tag #head will receive these updates.

nimble install fft # install latest tagged version, or
nimble install fft@v0.2.0 # install an existing older version, or
nimble install fft@#head # install latest changes

References:

• https://github.com/

• https://github.com/nim-lang/nimble

• https://github.com/nim-lang/packages

[1] Be careful when you execute the init command on directories that already contain valuable data, as Nimble may overwrite
files. Make a backup!

488

https://github.com/
https://github.com/nim-lang/nimble
https://github.com/nim-lang/packages

Performance of multiplication vs. division
In various places in the book, we said that for arithmetic operations, a division is typically slower
than multiplication. And we said that on modern hardware, floating-point operations are nearly as
fast as integer operations. To prove this, we provide the following small test program. Compile it
with the option -d:danger for meaningful results.

Float division can often be replaced by multiplication with the inverse, so instead of x / 2, we can
always write x * 0.5. An expression like x / 2 looks cleaner, so we may wonder if it pays off to
write x * 0.5, or if the compiler will rewrite the expression for us automatically. Therefore, our test
program tests the performance of direct division and reciprocal multiplication, as well as the per
formance of integer data types for similar operations. As for integers, there are no reciprocal val
ues, we have used a plain multiplication instead. We have tested for constant divisors 2, 3, and 97
(prime), and the division by a variable with unknown content. Obviously, the compiler has some
freedom for optimizations when one operand is a constant. As a simple example, x * 2 can always
be evaluated as x + x, and for integers, i div 2 can be replaced by a shift operation. But the com
piler knows many more optimizations. An important class of optimizations for 32-bit numbers on a
64-bit CPU is the fact that division can be replaced by a multiplication and a bit shift.

compile with option -d:danger
import std/[random, times, strformat]

proc rand(i: uint32): uint32 = rand(i.int).uint32

proc main1(T: typedesc; mul: static[bool]; val: static[int]) =
 var sum: float # always float to avoid overflow
 var minDelta = float.high
 var s: seq[T] = newSeq[T](1e5.int)
 randomize(0)
 for j in 0 .. 100:
 for i in s.low .. s.high:
 s[i] = T(rand(T(100)))
 let start = cpuTime()
 for i in s.low .. s.high:
 when mul:
 when T is float or T is float32:
 s[i] *= (T(1) / T(val))
 else:
 s[i] *= T(val) # *= (1 div x) makes no sense here
 else:
 when T is float or T is float32:
 s[i] /= T(val)
 else:
 s[i] = s[i] div T(val) # we have no div= operator
 let delta = cpuTime() - start
 minDelta = min(minDelta, delta)
 for i in s.low .. s.high:
 sum += float(s[i])
 echo "sum: ", sum # ensure that final sum is really calculated and not optimized out

489

 var str = when mul: "* (1 / " & $val & ")" else: " / " & $val
 when mul and not (T is float or T is float32):
 str = " * " & $val # plain multiplication
 let time = fmt": {minDelta * 1e6:>4.2f} us"
 echo typeof(T), ", ", str, time#": ", minDelta * 1e6, " us"

main2 differs only in proc header from main1
proc main2(T: typedesc; mul: static[bool]; val: int) =
 var sum: float # always float to avoid overflow
 var minDelta = float.high
 var s: seq[T] = newSeq[T](1e5.int)
 randomize(0)
 for j in 0 .. 100:
 for i in s.low .. s.high:
 s[i] = T(rand(T(100)))
 let start = cpuTime()
 for i in s.low .. s.high:
 when mul:
 when T is float or T is float32:
 s[i] *= (T(1) / T(val))
 else:
 s[i] *= T(val) # *= (1 div x) makes no sense here
 else:
 when T is float or T is float32:
 s[i] /= T(val)
 else:
 s[i] = s[i] div T(val) # we have no div= operator
 let delta = cpuTime() - start
 minDelta = min(minDelta, delta)
 for i in s.low .. s.high:
 sum += float(s[i])
 echo "sum: ", sum # ensure that final sum is really calculated and not optimized out
 var str = when mul: "* (1 / " & $val & ")" else: " / " & $val
 when mul and not (T is float or T is float32):
 str = " * " & $val # plain multiplication
 let time = fmt": {minDelta * 1e6:>4.2f} us"
 echo typeof(T), ", ", str, time#": ", minDelta * 1e6, " us"

template doTheStaticTestWith(x: typed) =
 main1(float, false, x)
 main1(float, true, x)
 main1(float32, false, x)
 main1(float32, true, x)
 main1(int, false, x)
 main1(int, true, x)
 main1(int32, false, x)
 main1(int32, true, x)
 main1(uint32, false, x)
 main1(uint32, true, x)

template doTheTestWith(x: typed) =

490

 main2(float, false, x)
 main2(float, true, x)
 main2(float32, false, x)
 main2(float32, true, x)
 main2(int, false, x)
 main2(int, true, x)
 main2(int32, false, x)
 main2(int32, true, x)
 main2(uint32, false, x)
 main2(uint32, true, x)

doTheStaticTestWith(2)
doTheStaticTestWith(3)
doTheStaticTestWith(97) # prime
echo ""
doTheTestWith(2)
doTheTestWith(3)
doTheTestWith(97) # prime

Table 2. Division and Multiplica
tion with compile-time constants

type operation time in us

float / 2 44.30

float * (1 / 2) 26.89

float / 3 97.37

float * (1 / 3) 26.78

float / 97 97.40

float * (1 / 97) 26.89

float32 / 2 24.94

float32 * (1 / 2) 24.92

float32 / 3 65.92

float32 * (1 / 3) 24.90

float32 / 97 65.80

float32 * (1 / 97) 24.90

int div 2 44.35

int * 2 29.40

int div 3 51.02

int * 3 32.13

int div 97 69.08

int * 97 43.87

491

type operation time in us

int32 div 2 43.76

int32 * 2 28.07

int32 div 3 51.73

int32 * 3 31.55

int32 div 97 51.74

int32 * 97 30.87

uint32 div 2 28.18

uint32 * 2 28.15

uint32 div 3 43.68

uint32 * 3 31.57

uint32 div 97 61.23

uint32 * 97 30.86

We did the test on a modern AMD x86 CPU (AMD Ryzen 9 5900HX) with Nim version 1.7.3 and GCC
version 12.2.1 on a Gentoo Linux OS. The results from the table above confirm our prior statements.
Multiplication is typically faster, and float and integer operations do not differ much in perfor
mance. The operand size, 64- or 32-bit, makes no significant difference, and the same applies to
signed and unsigned integers. Of course, the actual performance differences of the tested opera
tions are a bit larger, as the loop execution and index updates generate a constant offset. We
observe that the timings for / 2 vs. * 0.5 differ, indicating that the compiler does not perform an
automatic replacement. The compiler refrains from making automatic replacements because such
replacements could slightly impact the accuracy of the operation. With the Nim compiler option
--passC:-ffast-math, we can indicate to the compiler that utmost accuracy is not our priority, thus
enabling the use of reciprocal multiplication. If we wish to allow only reciprocal multiplication, and
not all other math optimizations enabled by -ffast-math, we can use -freciprocal-math instead.

Table 3. Division and Multiplica
tion with unknown runtime vari
ables

type operation time in us

float / x 97.37

float * (1/x) 26.68

float32 / x 69.86

float32 * (1/x) 25.03

int div x 151.16

int * x 44.04

int32 div x 129.61

int32 * x 33.46

492

type operation time in us

uint32 div x 129.65

uint32 * x 43.72

The above table is the result of operations with a variable, and we assume that the compiler does
not manage to know the actual content of the variable. So the compiler has no freedom for opti
mizations, in all cases a /, div or * is executed. You may wonder why the * (1/x) reciprocal multi
plication is fast here, while it should be very slow: First calculation of (1 / x), and then the multi
plication. Well, the compiler is smart and recognizes that the x does not change in our timed loop,
so the (1 / x) operation is performed already before the loop. The above table shows us that inte
ger division is indeed a bit slow compared to multiplication.

Note that addition and subtraction is typically very fast — as fast or faster than multiply. Note also
that prediction of the actual performance is difficult: SIMD instructions can greatly improve perfor
mance when the compiler is able to use it. Or cache misses can greatly reduce performance, when
we work with large data, that does not completely fit into the caches.

References:

• https://cppbenchmarks.wordpress.com/2020/11/10/float-division-vs-multiplication-speed/

493

https://cppbenchmarks.wordpress.com/2020/11/10/float-division-vs-multiplication-speed/

ASCII table

proc print(i: int) =
 let c =
 if i > 31 and i < 128: char(i) else: ' '
 stdout.write(" ", c, " ")

proc main =
 echo "Visible ASCII Characters\n"
 stdout.write(" ")
 for i in 0 .. 15:
 if i < 10:
 stdout.write(" +")
 else:
 stdout.write("+")
 stdout.write(i, " ")
 stdout.write('\n')
 var i = 0
 while i < 128:
 if i < 10:
 stdout.write(" ")
 elif i < 100:
 stdout.write(" ")
 stdout.write(i, ' ')
 for j in 0 .. 15:
 print(i + j)
 stdout.write('\n')
 inc(i, 16)

main()

494

Div and mod operation

type
 T = array[-5 .. 4, int]
 T2 = array[-5 .. 4, T]

var t: T2

for d in 0 .. 1:
 if d == 0:
 echo "\nResult of i div j"
 else:
 echo "\nResult of i mod j"
 for i in -5 .. 4: # row
 for j in -5 .. 4: # col
 if i == -5 and j == -5:
 t[i][j] = int.high
 elif i == -5:
 t[i][j] = j
 elif j == -5:
 t[i][j] = i
 else:
 if j == 0:
 t[i][j] = int.high
 else:
 if d == 0:
 t[i][j] = i div j
 else:
 t[i][j] = i mod j

 for i in -5 .. 4:
 for j in -5 .. 4:
 if t[i][j] >= 0:
 stdout.write(" ")
 if t[i][j] == int.high:
 stdout.write(" ")
 else:
 stdout.write(t[i][j], " ")
 echo ""

495

Text styles
We use semantic markup for the book. Asciidoctor has some support for this: We can use user
defined roles for the markup, and additional use substitutions. Nim keywords and operators are
printed in bold, with a few exceptions: The macro keyword is printed in plain style when it occurs
very often in a section, because many dense bold terms look not that nice. Initially we had the some
problem with the proc keyword, but then we have used the term procedure instead when it makes
sense. The predefined data types like int, float or string, and user defined types are printed in a
monospace font. Variables, constants, and literals are printed in italic with a monospace font. Mod
ule names are printed as small caps, and code snippets in text blocks use monospace font with a
grey background. Callable names are printed in plain text with an appended (). Finally, newly intro
duced terms are printed in italics.

• New text: This is new stuff

• Recent text: This was recently updated

• First use: term

• Italic: This is italic

• Operators: + - & shl

• Keywords: var ref object import while

• Use of proc in text: proc

• Use of macro in text: macro

• Data types: float int Table

• String data type: string

• Function calls: setLen()

• Variables: i, j, length

• Module names: sᴛʀᴜᴛɪʟs, sʏsᴛᴇᴍ, ɪo

• Literals: 100, false, 3.14

• Constants: fmWrite

• Code in text: while a > 0 and not done:

• Terminal text: nim c -gc:arc test.nim

496

ChangeLog

Nov 2021
We have added a few more simple examples and exercises:

• Removing adjacent duplicates

• Array difference

• Binary search

• Integer to string conversion

• No game programming?

Feb 2022
• Regular expressions

• External Packages

• Templates (extended)

• Iterators (extended)

• Exceptions (extended)

Mar 2022
• Option types

• Command-line parsing

• Cligen command line interface generator

• Nimble package manager

• Parsing data files (in parallel)

Dec 2022
• Minimum spanning tree

• Changes for Nim 2.0

Mar 2023
• Concepts

Apr 2023
• Using parsecsv

497

• Memory-mapped files

Sep 2023
• Combinations

• Iterative merge sort

• Malebolgia

• Index for PDF version

498

Index
A

ADT, 177
algorithm, 19
allocation

object, 131
analogue, 12
anonymous procedures, 167
arithmetic

pointer, 130
array

type, 112

B

backticks
keywords, 53

basics
Nim, 55

beginner, 35
binary numbers, 42
bit operations, 193
block statement, 106
blocks, 95
boolean

types, 78

C

case statement, 103
casts, 192
catchable errors, 196
character

types, 79
characters

unicode, 89
clause

except, 198
closures, 165
code

global, 97
comments, 92
community

Nim, 32
compile-time proc execution, 168
compiler, 21

installation, 47
launching, 50

computer, 10
computer, program, 18
conditional execution, 100

at compile time, 102
container

types, 112
content copy of ref objects, 174
control

flow of, 100
control structures, 100
converters, 169
creating source code, 48
cstring

types, 89
custom exceptions, 197
cyclic imports, 211

D

data types, 65
array, 112
boolean, 78
character, 79
container, 112
cstring, 89
distinct, 74
enumeration, 76
float, 69
generic, 156
integer, 66
matrix, 119
multiline-string, 91
object, 109
ordinal, 81
pointer, 128
raw string, 91
references, 128
sequence, 112
set, 81
slice, 122
string, 86
subrange, 75
sum, 177
tensor, 119
tuple, 176
variant, 177

499

declarations, 55
defects, 196
defer statement, 199
destructors, 200
destructors & inheritance, 202
digital, 12
distinct

types, 74

E

efficient, 31
elegant, 32
enumeration

types, 76
errors

catchable, 196
escape sequences

in strings, 90
except clauses, 198
exceptions, 195

custom, 197
imported from C++, 198

execution
order of, 98
repeated, 104, 106

expression
try, 198

expressive, 32

F

facts
about Nim, 28

finalizers, 205
float, 69
Floating-point types, 69
floating-point types, 69
flow of cntrol, 100
forum

Nim, 32
functions, 139

G

generic, 156
global

code, 97

H

hexadecimal numbers, 46

I

if statement, 100
import

cyclic, 211
include

statement, 212
inheritance, 171

for destructors, 202
for value-objects, 172

inlining
procedures, 168

input, 63
installation

compiler, 47
int, 66
integer

types, 66
interpreter, 21
introduction, 9
IRC

Nim, 32
iterators, 106, 179

K

keywords
stropping, 53

L

language, programming, 20
launcing the compiler, 50
learning Nim

effort, 37
locality, 95, 153
loop

for, 106
while, 104

M

matrix
type, 119

method call syntax, 163
modules, 208
multi-line string

type, 91
multidimensional

types, 119

500

N

nested procedures and closures, 165
Nim

first program, 38
why not use, 36

numbers
binary, 42
hexadecimal, 46

O

object
allocation, 131
ref, 125
types, 109
value, 125

object variants, 177
object-oriented programming, 171
objects

as proc parameters, 149
references to, 133

OOP, 171
open

and free
MIT license, 32

openArray
as proc argument, 151

operating system, 14
operations

on bits, 193
operators, 97, 98
order of execution, 98
ordinal

types, 81
OS, 14
output, 63
overloading

proc name, 148

P

parameters
types and untyped, 189

pointer
arithmetic, 130
introduction, 128
type, 128

pointers, 128
popularity

Nim, 33
proc

inlining, 168
parameters

object, 149
recursive, 169
return, 147

proc arguments
openArray, 151
varargs, 151

proc execution
compile-time, 168

Proc name overloading, 148
Procedure

bound to a data type, 152
procedure variables, 164
procedures, 139

anonymous, 167
nested, 165

program
run, 50

program, computer, 18
programming language, 20
programming, computer, 17
punctuation, 97

R

raise statement, 196
raw strings

type, 91
recursion, 169
ref

type, 128
ref object

copy, 174
ref objects

as proc parameters, 149
references, 125, 128

to objects, 133
result

variable, 147
return

from proc, 147
var type, 148

running the program, 50

S

scopes, 95

501

scoping, 153
sequence

type, 112
set

types, 81
shadowing, 95
slice

type, 122
Sorting, 310
source code

comments, 92
creation, 48
global, 97
Nim, 94

space
white, 97

starting
with Nim, 36

statement
block, 106
case, 103
defer, 199
if, 100
include, 212
raise, 196
switch, 103
try, 197
when, 102

statements, 58
string

types, 86
strings

escape sequences, 90
stropping

keywords, 53
structures

control, 100
subrange

types, 75
sum types, 177
syntax

method call, 163

T

teaching, 36
template

code block parameter, 190
Templates, 184

templates
passing operators, 190

tensor
types, 119

try expression, 198
try statement, 197
tuple

type, 176
type conversion, 192
typed parameters, 189
types

array, 112
boolean, 78
character, 79
container, 112
cstring, 89
data, 65
distinct, 74
enumeration, 76
float, 69
generic, 156
integer, 66
matrix, 119
multi line string, 91
multidimensional, 119
object, 109
ordinal, 81
pointer, 128
raw string, 91
ref, 128
sequence, 112
set, 81
slice, 122
string, 86
subrange, 75
sum, 177
tensor, 119
tuple, 176
variant, 177

U

unicode
characters, 89
entering, 89

uniform function call syntax, 163
untyped parameters, 189
user interface, 16

502

V

var
procedure type, 143
return type, 148

varargs
as proc argument, 151

variable
result, 147

variables
procedure, 164

variant
type, 177

virus
Nim software, 33

visibility, 95, 153

W

when staement, 102
while loop, 104
whitespace, 97

503

	Computer Programming with the Nim Programming Language
	Table of Contents
	About this book
	Disclaimer & legal notice
	Part I: Introduction
	What is a computer?
	Analogue and digital
	What is an operating system?
	What is a user interface?
	What is computer programming?
	What is a computer program?
	What is an algorithm?
	What is a programming language?
	Compilers and interpreters
	Types of programming languages
	Why Nim?
	Some facts about Nim
	Nim supports many programming styles
	Nim is efficient
	Nim is expressive and elegant
	Nim is open and free
	Nim has a community
	Nim is evolving
	Nim is not a virus
	Why is Nim not a popular mainstream language yet?
	Is Nim a good choice as the first language for a beginner?
	Is Nim really a good teaching language?
	So, is Nim really the best starting point for me?
	After learning Nim, will I still have to learn other programming languages?
	Why should I not use Nim?
	How long does it take to learn Nim?

	Our first Nim program
	Binary numbers
	Hexadecimal numbers
	Installation of the compiler
	Creation of source-code files
	Launching the compiler and running the program
	Stropping for keywords and operators

	Part II: The Basics
	Declarations
	Statements
	Input and output
	Data types
	Integer types
	Floating-point types
	Distinct types
	Subrange types
	Enumeration types
	Boolean types
	Characters
	Ordinal types
	Sets
	Strings
	Comments
	Other data types

	Nim source code
	Blocks, scopes, visibility, locality, and shadowing
	Global code
	Whitespace, punctuation, and operators
	Operators
	Order of execution

	Control structures
	If statement and if expression
	The when statement
	The case statement
	The while loop
	The block statement
	For loops and iterators

	Objects
	Arrays and sequences
	Some details
	Multidimensional arrays and sequences

	Slices
	Value objects and references
	References and pointers
	Introduction to pointers
	Pointer arithmetic
	Allocating objects
	References to objects

	Procedures and functions
	Introduction
	Special argument types: openArray and varargs
	Procedures bound to a data type
	Scoping, visibility, and locality
	Generics
	Example for the use of generics
	Method call syntax
	Procedure variables
	Nested procedures and closures
	Anonymous procedures
	Compile-time proc execution
	Inlining procedures
	Recursion
	Converters

	Object-oriented programming and inheritance
	Inheritance for value-objects
	Content copy of ref objects

	Other builtin data types
	Tuple types
	Object variants

	Iterators
	Templates
	Typed vs untyped parameters
	Passing a code block to a template
	Passing operators to templates
	Advanced template use

	Casts and type conversions
	Bitwise operations
	Exceptions
	Defects and catchable errors
	Raise statement
	Custom exceptions
	Try statement
	Try expressions
	Except clauses
	Imported exceptions
	Defer statement

	Destructors
	Destructors and inheritance

	Finalizers
	Modules
	Cyclic imports

	Include

	Part III: Nim’s Standard Library
	Command-line arguments
	Reading data from the terminal
	Writing text to the terminal window
	Option types
	Serialization — storing data permanently on external storage
	Streams and files
	Files
	Streams

	String processing
	Basic string operations
	Module stringutils
	Module parseutils
	Module strscans
	Module strformat

	Arrays and sequences
	Module sequtils

	Random numbers
	Timers
	Hash tables
	User-defined hash values
	Equality and identity
	Performance
	Tuples or other containers as keys
	CountTable

	Hash sets
	Operating system services
	Command-line parsing
	Regular expressions
	Greedy matching
	Escape sequences
	Final remarks

	Part IV: Some Programming Tasks
	Permutations
	Combinations
	Using mask permutations
	Using recursion
	First iterative solution
	Simplified solution
	Counting upwards
	Stack-based solution
	An iterative solution without a stack

	Sorting
	Selection sort
	Insertion sort
	Quick sort
	Merge sort
	Iterative merge sort

	Reading CSV files and other data
	Some small exercises
	Removing adjacent duplicates
	Array difference
	Binary search
	Integer to string conversion

	Minimum spanning tree
	The Prim algorithm
	Kruskal algorithm
	Disjoint-set data structure
	Kruskal with disjoint-set
	Kruskal with disjoint-set and Delaunay triangulation
	Prim with Delaunay triangulation
	Prim with Delaunay triangulation and priority queue
	GUI toolkits
	No game programming?

	Part V: External Packages
	Parsing expression grammars
	Capturing data

	Cligen command line interface generator

	Part VI: Advanced Nim
	Macros and meta-programming
	Introduction
	Types of macro parameters
	Quote and the quote do: construct
	The genast() macro as a replacement for quote do:
	Building the AST manually
	The assert macro
	Pragma macros
	Pragma macros for iterators
	Macros for generating data types
	Macros to generate new operator symbols

	Process execution
	Module threadpool
	Using the threads module to create new threads
	Using channels for data exchange between threads
	Race conditions
	Guards and locks
	Exceptions in threads
	Malebolgia
	Parsing data files (in parallel)

	Code execution with async/await
	Is async/await faster than multi-threading?
	Nim’s asynchronous dispatcher
	Asynchronous procedures
	Simple example
	File download
	A chat server application
	The client application

	Concepts
	Purpose of concepts
	Concept diagnostics
	Generic concepts
	Concept-derived values and concept refinement
	Concept redesign 2019

	Part VII: Appendix
	Disclaimer and legal notice
	Acknowledgments
	Changes for Nim 2.0
	ARC/ORC memory management
	Default values for object fields
	Overloadable enums
	CString limitations
	StrictDefs
	Out parameters
	StrictFuncs
	Unicode operators
	Unnamed break in a block

	Changes for Nim > 2.0
	Nimble package manager
	Purpose of package managers
	Creating and publishing Nimble packages
	Public packages

	Performance of multiplication vs. division
	ASCII table
	Div and mod operation
	Text styles
	ChangeLog
	Nov 2021
	Feb 2022
	Mar 2022
	Dec 2022
	Mar 2023
	Apr 2023
	Sep 2023

	Index

